Normal aortic compliance allows cardiac output to be distributed throughout the cardiac cycle, resulting in lower peak blood velocity. Loss of compliance with aging, hypertension, and possibly other risk factors for atherosclerosis increases peak blood velocity, creating eddy currents in areas of changing vascular geometry, as well as creating adverse patterns of diastolic flow. In the resulting areas of low flow, increased blood viscosity creates the potential for thrombosis. Occlusive thrombi may cause death; parietal or mural thrombi may organize to form atherosclerotic plaques.
D-ribose, a naturally occurring pentose carbohydrate, has been shown to replenish high-energy phosphates following myocardial ischemia and high intensity, repetitive exercise. Human studies have mainly involved short-term assessment, including potential toxicity. Reports describing adverse effects of D-ribose with prolonged ingestion have been lacking. Therefore, this study assessed the toxicity of extended consumption of D-ribose in healthy adults. Nineteen subjects ingested 20 grams/Day (10 grams, twice a Day) of ribose with serial measurements of biochemical and hematological parameters at Days 0, 7, and 14. No significant toxic changes over the 14-day assessment period occurred in complete blood count, albumin, alkaline phosphatase, gamma glutamyltransferase, alanine amiotransferase, and aspartate aminotransferase. However, D-ribose did produce an asymptomatic, mild hypoglycemia of short duration. Uric acid levels increased at Day 7, but decreased to baseline values by Day 14. D-ribose consumption for 14 days appears not to produce significant toxic changes in both hematological and biochemical parameters in healthy human volunteers.
Cardiovascular diseases account for more deaths worldwide than any other illness. Myocardial ischemia, a common finding in cardiovascular diseases, lowers cellular energy levels, which affects a cell's integrity and function. Pre-clinical animal studies have reported lower cellular energy levels with an associated decreased function following myocardial ischemia. Recently, scientists have reported that the failing heart is energy starved and yet no pharmaceuticals have been able to address this issue with satisfactory results. Over decades, researchers have explored the use of various metabolites to replenish deficient cellular energy levels following induced ischemia with mixed results. However, D-ribose, a natural occurring carbohydrate, has demonstrated significant enhancing abilities in replenishing deficient cellular energy levels following myocardial ischemia, as well as improving depressed function in numerous animal investigations. Subsequent clinical trials have further substantiated these benefits of D-ribose in patients afflicted with ischemic cardiovascular disease and those carrying the diagnosis of congestive heart failure. The future of effective therapies for ischemic heart disease and congestive heart failure must strongly consider novel pharmaceuticals directed at replenishing cellular energy levels. Intellectual property and the represented patents in this paper emphasize the use of D-ribose for its cellular energy enhancing potential, reflected in both objective and subjective clinical improvements; therefore, substantiating its value in patients with ischemic cardiovascular diseases.
A healthy cellular system involves the maintenance of an intracellular metabolic balance. Reactive oxygen species (ROS) are constantly produced as a normal product of cellular metabolism; however, during situations of cellular stress, these levels can increase dramatically with the potential to cause deleterious cellular structural and/or functional consequences. There is a significant elevation in these ROS following stressful situations, such as ischemia, hypoxia, high-intensity exercise, and in many diseases. To combat these ROS, neutralizing endogenous enzymes, as well as exogenous antioxidants, can aid in minimizing their potential untoward cellular effects. Exogenous reducing antioxidant agents, such as vitamin C and/or E, play a role in addressing these formed species; however, recent research has suggested that fruit seed extracts may provide additional cellular benefits beyond their antioxidant features. Furthermore, supplemental D-ribose enhances the recovery of high-energy phosphates following stress and appears to potentially offer additional benefits by reducing radical formation. Specifically, during periods of hypoxia/ischemia, supplemental D-ribose may play an inhibitory role in the breakdown of adenine nucleotides, influencing the subsequent formation of xanthine and uric acid compounds; and thereby affecting the release of superoxide anion radicals. The combination of D-ribose with reducing antioxidants may provide a more optimal state of cellular protection during and following times of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.