BackgroundPlasmodium falciparum, the causative agent of severe human malaria, has evolved to become resistant to previously successful antimalarial chemotherapies, most notably chloroquine and the antifolates. The prevalence of resistant strains has necessitated the discovery and development of new chemical entities with novel modes-of-action. Although much effort has been invested in the creation of analogues based on existing drugs and the screening of chemical and natural compound libraries, a crucial shortcoming in current Plasmodial drug discovery efforts remains the lack of an extensive set of novel, validated drug targets. A requirement of these targets (or the pathways in which they function) is that they prove essential for parasite survival. The polyamine biosynthetic pathway, responsible for the metabolism of highly abundant amines crucial for parasite growth, proliferation and differentiation, is currently under investigation as an antimalarial target. Chemotherapeutic strategies targeting this pathway have been successfully utilized for the treatment of Trypanosomes causing West African sleeping sickness. In order to further evaluate polyamine depletion as possible antimalarial intervention, the consequences of inhibiting P. falciparum spermidine synthase (PfSpdSyn) were examined on a morphological, transcriptomic, proteomic and metabolic level.ResultsMorphological analysis of P. falciparum 3D7 following application of the PfSpdSyn inhibitor cyclohexylamine confirmed that parasite development was completely arrested at the early trophozoite stage. This is in contrast to untreated parasites which progressed to late trophozoites at comparable time points. Global gene expression analyses confirmed a transcriptional arrest in the parasite. Several of the differentially expressed genes mapped to the polyamine biosynthetic and associated metabolic pathways. Differential expression of corresponding parasite proteins involved in polyamine biosynthesis was also observed. Most notably, uridine phosphorylase, adenosine deaminase, lysine decarboxylase (LDC) and S-adenosylmethionine synthetase were differentially expressed at the transcript and/or protein level. Several genes in associated metabolic pathways (purine metabolism and various methyltransferases) were also affected. The specific nature of the perturbation was additionally reflected by changes in polyamine metabolite levels.ConclusionsThis study details the malaria parasite's response to PfSpdSyn inhibition on the transcriptomic, proteomic and metabolic levels. The results corroborate and significantly expand previous functional genomics studies relating to polyamine depletion in this parasite. Moreover, they confirm the role of transcriptional regulation in P. falciparum, particularly in this pathway. The findings promote this essential pathway as a target for antimalarial chemotherapeutic intervention strategies.
LEA group I, II and III antibodies all recognised soluble proteins present in an extract of yeast (Saccharomyces cerevisiae). The smaller protein of the two recognised by the group I antibody displayed identical migration on SDS-PAGE to the pea seed LEA group I protein against which the antibody was raised. However, the antibody failed to recognise the predominant protein present after heating the extract at 80 degrees C for 10 min. This predominant protein, which also displayed identical migration on SDS-PAGE, was purified from the supernatant of the extract heated at 80 degrees C for 10 min. Peptide sequencing after CNBr cleavage identified the isolated protein as the heat shock protein HSP 12. Despite a previous report that HSP 12 is a heat shock protein, HSP 12 was found to increase in yeast grown at 37 degrees C compared with growth at 30 degrees C. However, increased amounts of HSP 12 were present in yeast after entry into stationary phase; this was enhanced by growth in the osmolytes NaCl and mannitol.
This article examines the early-and mid-career transition to research leadership in Africa. Much of the available African literature on research leadership indicate several challenges related to poor conceptualisations of career transitions and gaps in the availability of research training. Qualitative data were collected using individual interviews (n=24) and focus groups (n=27) to identify key transition points of early career researchers (ECRs) and mid-career researchers (MCRs) in selected African countries. The qualitative data was complemented with quantitative survey questionnaires (n=250) and a triangulation approach was adopted to analyse the results. The findings were themed into different categories describing the common career paths, stages and challenges of research leaders. The latter part of the findings present a discussion on development approaches to attract and retain researchers in African universities. By focusing on the African continent, this study contributes to the current body of literature on research leadership in the Global South.
ASP53, a 53 kDa heat soluble protein, was identified as the most abundant protein in the mature seeds of Acacia erioloba E.Mey. Immunocytochemistry showed that ASP53 was present in the vacuoles and cell walls of the axes and cotyledons of mature seeds and disappeared coincident with loss of desiccation tolerance. The sequence of the ASP53 transcript was determined and found to be homologous to the double cupin domain-containing vicilin class of seed storage proteins. Mature seeds survived heating to 60°C and this may be facilitated by the presence of ASP53. Circular dichroism spectroscopy demonstrated that the protein displayed defined secondary structure, which was maintained even at high temperature. ASP53 was found to inhibit all three stages of protein thermal denaturation. ASP53 decreased the rate of loss of alcohol dehydrogenase activity at 55°C, decreased the rate of temperature-dependent loss of secondary structure of haemoglobin and completely inhibited the temperature-dependent aggregation of egg white protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.