The control of fecundity is critical in determining mammalian offspring survival. It is regulated principally by the ovulation rate, so that primates and large farm species commonly have a single offspring. Previously, several mutations have been identified in sheep which increase the naturally low ovulation rate; although in some cases homozygous ewes are infertile. In the present study we present a detailed characterization of a novel mutation in growth differentiation factor 9 (GDF9), found in Icelandic Thoka sheep. This mutation is a single base change (A1279C) resulting in a nonconservative amino acid change (S109R) in the C-terminus of the mature GDF9 protein, which is normally expressed in oocytes at all stages of development. Genotyping all animals for which reproductive records were available confirmed this mutation to be associated with increased fecundity in heterozygous ewes and infertility in homozygotes. Analysis of homozygote ovarian morphology and a number of genes normally activated in growing follicles showed that GDF9 was not involved in oocyte activation, but in subsequent development of the follicle. This study highlights the importance of oocyte factors in regulating fertility and provides new information for structural analysis and investigation of the potentially important sites of dimerization or translational modifications required to produce biologically active GDF9. It also provides the basis for the utilization of these animals to enhance sheep production.
Activins and inhibins, members of the transforming growth factor-beta family are able to stimulate and inhibit, respectively, FSH synthesis and release. Other members of this superfamily, the bone morphogenetic proteins (BMPs), may also affect FSH synthesis in the mouse. The aim of this work was to determine whether BMPs are expressed in the ovine pituitary and whether they play a role in the regulation of FSH release.The mRNAs encoding BMP-2, BMP-4, BMP-7 and the oocyte-derived growth factor, growth differentiation factor (GDF)-9 were detected in the pituitaries of cyclic ewes by reverse-transcriptase PCR, as well as the mRNAs encoding the BMP type I receptors, BMPR-IA (activinreceptor-like kinase (ALK)-3) and BMPR-IB (ALK-6), and type II receptors (BMPR-II). Immunolabeling of pituitary sections revealed the presence of BMPR-IA (ALK-3) and BMPR-II in gonadotrope cells. To investigate the potential effects of BMPs on FSH secretion, ewe pituitary cell cultures were treated with BMP-4 (10 11 M to 10 9 M) for 48 h. Interestingly, FSH release was decreased in a dose-dependent manner. At 10 9 M BMP-4 both FSH concentration and FSH mRNA expression were reduced by 40% of control values. In contrast, there was no inhibitory effect on either LH or LH mRNA expression. A similar result was found with BMP-6. BMP-4 triggered the phosphorylation of Smad1, suggesting that the effect of BMP-4 on FSH secretion is due to the activation of the BMPs signaling pathway. Furthermore, BMP-4 blocked the stimulatory effect of activin on both FSH release and FSH mRNA and amplified the suppression of FSH release and FSH mRNA levels induced by 17 -estradiol. These results indicate that a functional BMP system operates within the sheep pituitary, at least in vitro, to decrease FSH release and to modulate the effect of activin.
Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Immunofluorescence indicated that autoimmune sera from certain scleroderma/CREST patients, in addition to binding to the primary constrictions or centromeres, also labelled pericentromeric heterochromatin in mouse and human metaphase chromosomes. Immunoblotting has revealed that two conserved nuclear antigens are recognized by this CREST subgroup, one of mol. wt 26 kD (p26), and the other of mol. wt 23 kD (p23). In situ immunolabelling with affinity purified antibodies demonstrated that p26, but not p23, is concentrated in pericentromeric heterochromatin. Further studies have shown that both p26 and p23 are immunologically related to the Drosophila heterochromatin-associated protein HP1, and to other chromodomain proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.