Oxidation processes are impacted by the type, concentration and reactivity of the dissolved organic matter (DOM). In this study, the reactions between various types of DOM (Suwannee River fulvic acid (SRFA), Nordic Reservoir NOM (NNOM) and Pony Lake fulvic acid (PLFA)) and two oxidants (ozone and chlorine) were studied in the pH range 2-9 by using a combination of optical measurements and electron donating capacities. The relationships between residual electron donating capacity (EDC) and residual absorbance showed a strong pH dependence for the ozone-DOM reactions with phenolic functional groups being the main reacting moieties. Relative EDC and absorbance abatements (UV or UV) were similar at pH 2. At pH 7 or 9, the relative abatement of EDC was more pronounced than for absorbance, which could be explained by the formation of UV-absorbing products such as benzoquinone from the transformation of phenolic moieties. An increase in fluorescence abatement with increasing pH was also observed during ozonation. The increase in fluorescence quantum yields could not be attributed to formation of benzoquinone, but related to a faster abatement of phenolic moieties relative to fluorophores with low ozone reactivity. The overall OH yields as a result of DOM-induced ozone consumption increased significantly with increasing pH, which could be related to the higher reactivity of phenolic moieties at higher pH. TheOH yields for SRFA and PLFA were proportional to the phenolic contents, whereas for NNOM, the OH yield was about 30% higher. During chlorination of DOM at pH 7 an efficient relative EDC abatement was observed whereas the relative absorbance abatement was much less pronounced. This is due to the formation of chlorophenolic moieties, which exert a significant absorbance, and partly lose their electron donating capacity. Pre-ozonation of SRFA leads to a decrease of chloroform and haloacetic acid formation, however, only after a threshold of> ∼50% abatement of the EDC and under conditions which are not precursor limited. The decrease in chloroform and haloacetic acid formation after the threshold EDC abatement was proportional to the relative residual EDC.
Electron-donating activated aromatic moieties, including phenols, in dissolved organic matter (DOM) partially control its reactivity with the chemical oxidants ozone and chlorine. This comparative study introduces two sensitive analytical systems to directly and selectively quantify the electron-donating capacity (EDC) of DOM, which corresponds to the number of electrons transferred from activated aromatic moieties, including phenols, to the added chemical oxidant 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonate) radical cation (i.e., ABTS). The first system separates DOM by size exclusion chromatography (SEC) followed by a post-column reaction with ABTS and a spectrophotometric quantification of the reduction of ABTS by DOM. The second system employs flow-injection analysis (FIA) coupled to electrochemical detection to quantify ABTS reduction by DOM. Both systems have very low limits of quantification, allowing determination of EDC values of dilute DOM samples with <1 mg carbon per liter. When applied to ozonated and chlorinated model DOM isolates and real water samples, the two analytical systems showed that EDC values of the treated DOM decrease with increasing specific oxidant doses. The EDC decreases detected by the two systems were in overall good agreement except for one sample containing DOM with a very low EDC. The combination of EDC with UV-absorbance measurements gives further insights into the chemical reaction pathways of DOM with chemical oxidants such as ozone or chlorine. We propose the use of EDC in water treatment facilities as a readily measurable parameter to determine the content of electron-donating aromatic moieties in DOM and thereby its reactivity with added chemical oxidants.
Applications of IDA in, for example, immobilized metal ion affinity chromatography for purification of His-tagged proteins are well recognized. The use of IDA as an efficient chelating adsorbent for environmental separations, that is, for the capture of heavy metals, is not studied. Adsorbents based on supermacroporous gels (cryogels) bearing metal chelating functionalities (IDA residues and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine followed by the treatment with bromoacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture of heavy metal ions. The cryogels were prepared in plastic carriers, resulting in desired mechanical stability and named as macroporous gel particles (MGPs). Sorption and desorption experiments for different metals (Cu²+, Zn²+, Cd²+, and Ni²+ with IDA adsorbent and Cu²+ and Zn²+ with TBA adsorbent) were carried out in batch and monolithic modes, respectively. Obtained capacities with Cu²+ were 74 μmol/mL (TBA) and 19 μmol/mL gel (IDA). The metal removal was higher for pH values between pH 3 and 5. Both adsorbents showed improved sorption at lower temperatures (10°C) than at higher (40°C) and the adsorption significantly dropped for the TBA adsorbent and Zn²+ at 40°C. Desorption of Cu²+ by using 1 M HCl and 0.1 M EDTA was successful for the IDA adsorbent whereas the desorption with the TBA adsorbent needs further attention. The result of this work has demonstrated that MGPs are potential treatment alternatives within the field of environmental separations and the removal of heavy metals from water effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.