The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.
Eutrophication and the resulting formation of harmful algal blooms (HAB) causes huge economic and environmental damages. Phosphorus (P) from sewage effluent and agricultural run-off has been identified as a major cause for eutrophication. Phosphorous concentrations greater than 100 μg P/L are usually considered high enough to cause eutrophication. The strictest regulations however aim to restrict the concentration below 10 μg P/L. Orthophosphate (or phosphate) is the bioavailable form of phosphorus. Adsorption is often suggested as technology to reduce phosphate to concentrations less than 100 and even 10 μg P/L with the advantages of a low-footprint, minimal waste generation and the option to recover the phosphate. Although many studies report on phosphate adsorption, there is insufficient information regarding parameters that are necessary to evaluate its application on a large scale. This review discusses the main parameters that affect the economics of phosphate adsorption and highlights the research gaps. A scenario and sensitivity analysis shows the importance of adsorbent regeneration and reuse. The cost of phosphate adsorption using reusable porous metal oxide is in the range of $ 100 to 200/Kg P for reducing the phosphate to ultra-low concentrations. Future research needs to focus on adsorption capacity at low phosphate concentrations, regeneration and reuse of both the adsorbent and the regeneration liquid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.