Clothing with conductive textiles for health care applications has in the last decade been of an upcoming research interest. An advantage with the technique is its suitability in distributed and home health care. The present study investigates the electrical properties of conductive yarns and textile electrodes in contact with human skin, thus representing a real ECG-registration situation. The yarn measurements showed a pure resistive characteristic proportional to the length. The electrodes made of pure stainless steel (electrode A) and 20% stainless steel/80% polyester (electrode B) showed acceptable stability of electrode potentials, the stability of A was better than that of B. The electrode made of silver plated copper (electrode C) was less stable. The electrode impedance was lower for electrodes A and B than that for electrode C. From an electrical properties point of view we recommend to use electrodes of type A to be used in intelligent textile medical applications.
In this study we aim to explain the behavior of textile electrodes due to their construction techniques. Three textile electrodes were tested for electrode impedance and polarization potentials. The multifilament yarn (A) is favorable for its low thread resistance. Although, when knitted into electrodes, the staple fiber yarn (B) showed a comparable and satisfiable electrode impedance. The multifilament yarn had however a lower polarization potential drift then the other specimens. The monofilament yarn (C) had high electrode impedance and varying mean polarization potentials due to its conductive material and small contact area with the skin.
BackgroundECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance.MethodsThe electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution.ResultsThe results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 kΩ at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier.ConclusionOur conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.
The aim of this study was to develop and evaluate a robust heartbeat detector for noisy electrocardiograms (ECGs) recorded with textile electrodes. The authors suggest a method based on weighted correlation in a multi-channel ECG to obtain a heartbeat detector. Signals were acquired during rest and at movements which simulate every day activities. From each recording a segment corresponding to a heartbeat was extracted and correlated with the whole signal. From the correlation data, heartbeat candidates were derived and weighted based on their variance similarity with the heartbeat model and previous heartbeats. Finally, the outputs of each channel were added to create the global output. The output was compared to the Pan Tompkins heartbeat detector. Results are promising for recordings at rest (sensitivity = 0.97, positive predictive value (PPV) = 0.97). For static muscle tension in the torso the results were much higher than the reference method (sensitivity = 0.77, PPV = 0.85). Corresponding values for the reference method were sensitivity = 0.96 and PPV = 0.95 at rest and sensitivity = 0.52 and PPV = 0.75 during muscle tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.