In this study we aim to explain the behavior of textile electrodes due to their construction techniques. Three textile electrodes were tested for electrode impedance and polarization potentials. The multifilament yarn (A) is favorable for its low thread resistance. Although, when knitted into electrodes, the staple fiber yarn (B) showed a comparable and satisfiable electrode impedance. The multifilament yarn had however a lower polarization potential drift then the other specimens. The monofilament yarn (C) had high electrode impedance and varying mean polarization potentials due to its conductive material and small contact area with the skin.
Purpose -The paper seeks, by means of measurement and modelling, to evaluate frequency dependent per-unit-length parameters of conductive textile transmission line (CTTL) for wearable applications and to study deterioration of these parameters when CTTL is subjected to washing. Design/methodology/approach -The studied transmission line is made of Nickel/Copper (Ni/Cu) plated polyester ripstop fabric and is subjected to standard 608C cycle in a commercial off-the-shelf washing machine. The per-unit-length parameters (resistance and inductance) and characteristic impedance of the line are extracted from measurements before and after washing. Using the measurement data an equivalent circuit is created to model the degradation of the line. The circuit is then integrated in a three-dimensional transmission line matrix (TLM) model of the transmission line. Findings -Both an electrical equivalent circuit and a TLM model are developed describing the degradation of the conductive textile when washed. A severe deterioration of the electrical parameters of the line is noticed. Experimental and modelling results are in good agreement in the addressed frequency band. Research limitations/implications -Analysis is performed for frequencies up to 10 MHz. The developed TLM model can be used to conduct parametric studies of the CTTL. To counteract the degradation of the line, protective coating is to be considered in further studies. Originality/value -This paper extends knowledge of the subject by experimental and simulation-based characterization of the CTTL when subjected to washing cycles.
Abstract-A radiated susceptibility problem has been identified and solved by means of simulations for a wearable computer system in the frequency range 30 MHz-1 GHz. Simulation strategy is presented for analyzing the effects induced by an electromagnetic plane wave within the system comprising infra-red sensors connected by coaxial cables. A procedure of creating a TLM model of the coaxial cable with controlled electromagnetic coupling characteristics on a coarse grid is proposed. Results are verified by means of theoretical calculations. Different sensor enclosures and filtering circuits are analyzed and implemented to meet the hard electromagnetic compatibility requirements while not interfering with the functionality of the wearable application.
110Chedid, Belov, and Leisner
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.