This study aimed to assess the influence of glycosaminoglycan (chondroitin and glucosamine sulfates) supplementation in the diet on the performance and incidence of locomotor problems in broiler chickens. A completely randomized design was carried out in a 3 × 3 factorial scheme (3 levels of chondroitin sulfate −0, 0.05, and 0.10%; and 3 levels of glucosamine sulfate −0, 0.15, and 0.30%). Each treatment was composed of 6 replications of 30 broilers each. The performance of broilers (average weight, weight gain, feed intake, feed conversion, and productive viability) was assessed at 7, 21, 35, and 42 d of age, whereas the gait score, valgus and varus deviations, femoral degeneration, and tibial dyschondroplasia were assessed at 21 and 42 d of age. Increasing levels of glucosamine sulfate inclusion linearly increased the weight gain from 1 to 35 and from 1 to 42 d of age of broilers ( P = 0.047 and P = 0.039, respectively), frequency of broilers with no femoral degeneration in the right and left femurs, and the proliferating cartilage area of proximal epiphysis at 42 d of age ( P = 0.014, P < 0.0001, and P = 0.028, respectively). The increasing inclusion of chondroitin and glucosamine sulfates led to an increase in the frequency of broilers on the gait score scale 0 ( P = 0.007 and P = 0.0001, respectively) and frequency of broilers with no valgus and varus deviations ( P = 0.014 and P = 0.0002, respectively) also at 42 d of age. Thus, chondroitin and glucosamine sulfates can be used in the diet of broiler chickens to reduce their locomotor problems.
Non-ruminants Full-length research article Performance, nutrient digestibility, and intestinal histomorphometry of broilers fed diet supplemented with chondroitin and glucosamine sulfates ABSTRACT-We aimed to evaluate the performance, nutrient digestibility, and intestinal histomorphometry of broilers fed diet supplemented with chondroitin sulfate and glucosamine sulfate. The experiment was carried out with 320 male broiler chicks distributed in a completely randomized design in a 2×2 factorial scheme (0 and 0.1% chondroitin sulfate and 0 and 0.3% glucosamine sulfate), with eight replications of 10 birds. Performance was evaluated at 7 and 21 days of age, nutrient digestibility of the diet was performed from 18 to 21 days of age, and small intestine histomorphometry was evaluated at 21 days of age. Broilers fed diet supplemented with 0.3% glucosamine sulfate showed high final weight and weight gain. A significant interaction was observed between sulfates for digestibility coefficients of nitrogen, mineral matter, and calcium. The use of 0.1% chondroitin sulfate without glucosamine sulfate resulted in a reduced digestibility of nitrogen but increased digestibility of total minerals and calcium. Diets without chondroitin sulfate with 0.3% glucosamine sulfate increased the digestibility coefficients of mineral matter and calcium. A significant interaction was found for jejunum villus height, which was higher in broilers fed diet supplemented with 0.3% glucosamine sulfate, regardless of the inclusion of chondroitin sulfate. Thus, supplementation with glucosamine sulfate in broiler diets contributes to high weight gain and villus height. Sulfates used in isolation promote high digestibility of minerals.
The objective of this study was to determine the effect of sulfur amino acid (methionine+cystine) supplementation included in the diet of broiler chickens raised under Brazilian commercial conditions on the concentration of ammonia gas, moisture, pH, temperature, and nitrogen excretion in litter on the 14th, 28th, and 42nd day of breeding. A total of 900 male chicks of the Cobb500 line were used, distributed in a completely randomized design with five treatments, with six replicates of 30 birds. A basal diet (without methionine) was formulated and was supplemented with DL-methionine (0.072, 0.168, 0.239, 0.311% and 0.058, 0.134, 0.192, 0.250% for days 1 to 21 and days 22 to 42 of breeding respectively) replacing the corn starch in order to achieve the desirable digestible methionine + cysteine levels (0.545 (basal diet), 0.616, 0.711, 0.782 and 0.853%) and (0.514 (basal diet); 0.571; 0.647; 0.704 and 0.761% and digestible methionine + cysteine for the phase 1 to 21 and 22 to 42 days of breeding, respectively. There was no significant effect on the temperature and concentration of ammonia gas in any of the phases evaluated. Met+cys supplementation influenced moisture and pH of litter in all the evaluated phases. For nitrogen, a significant effect was observed at 14 days, not exhibiting effects during the other phases, suggesting that nitrogen excretion increases with increasing levels of met+cys in the diet for up to 14 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.