The selective synthesis and in situ characterization of aqueous Alcontaining clusters is a long-standing challenge. We report a newly developed integrated platform that combines (i) a selective, atomeconomical, step-economical, scalable synthesis of Al-containing nanoclusters in water via precision electrolysis with strict pH control and (ii) an improved femtosecond stimulated Raman spectroscopic method covering a broad spectral range of ca. T he importance of Al (aluminum) in the biosphere and to human civilization is enormous. The scale of mining and production of Al compounds is second only to that of Fe (iron). Our lives are influenced by its use in electronics (1, 2), cooking and eating utensils, and food packaging, and as structural materials in the construction, automotive, and aircraft industries. Its deposition and migration as a mineral ore are controlled by its aqueous chemistry and speciation. Millions of tons of Al compounds are used worldwide each year for water treatment, and it is found in all drinking water (3). The behavior of Al in water plays significant roles in soil chemistry and plant growth (4, 5), for example, governing Al bioavailability, toxicity, and its overall impact in aquatic ecosystems (6). Meanwhile, aqueous Al clusters are gaining importance as solution precursors for the large-area deposition of Al 2 O 3 coatings with broad technological applications (7,8).Despite more than a century of study (9, 10), the complete portrait of aqueous Al chemistry remains unclear. Studies of aqueous Al chemistry are notoriously difficult because of the variety and complexity of the species that can be formed, encompassing monomeric, oligomeric, and polymeric hydroxides (11-17); colloidal solutions and gels; and precipitates. Synthesis is complicated by the fact that the counter-ions and the method and rate of pH change all have dramatic effects on product formation (18,19). Few methods exist for the in situ determination and assignment of molecular-level structures. For instance, 27 Al NMR can only identify certain Al aqueous species (15). Furthermore, unlike organic compounds, systematic spectroscopic signatures of metal hydroxide clusters are less accessible, making interpretation of experimental spectra challenging. We hereby report a combined synthesis, experiment, and theory platform for the study of aqueous metal clusters. Electrolysis is exploited to control the solution pH and counter-ion content precisely during cluster synthesis without using chemical reagents. The evolution of solution species is followed in situ by an improved femtosecond stimulated Raman (FSR) technique (20-22) that can detect weak signals associated with structure-defining vibrational modes. The resulting pHdependent Raman spectra are interpreted by juxtaposition to quantum mechanically computed vibrational modes to assign specific molecular structures. Through this integrated approach, we have discovered a speciation behavior for Al in water that has not previously been observed. We focus here on the synthesis an...
This Perspective article highlights some of the traditional and non-traditional analytical tools that are presently used to characterize aqueous inorganic nanoscale clusters and polyoxometalate ions. The techniques discussed in this article include nuclear magnetic resonance spectroscopy (NMR), small angle X-ray scattering (SAXS), dynamic and phase analysis light scattering (DLS and PALS), Raman spectroscopy, and quantum mechanical computations (QMC). For each method we briefly describe how it functions and illustrate how these techniques are used to study cluster species in the solid state and in solution through several representative case studies. In addition to highlighting the utility of these techniques, we also discuss limitations of each approach and measures that can be applied to circumvent such limits as it pertains to aqueous inorganic cluster characterization.
The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.