OBJECTIVE: The “default network” represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that MEG source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. EXPERIMENTAL DESIGN: Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N=38) were age-gender matched with healthy control subjects (N=38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N=38). In order to localize 3D-brain regional differences, synthetic aperture magnetometry (SAM) was calculated across established frequency bands as follows: delta (0.9-4Hz), theta (4-8Hz), alpha (8-14Hz), beta (14-30Hz), gamma (30-80Hz), and super-gamma (80-150Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. CONCLUSIONS: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.
The near-infrared (NIR) spectra and absolute band strengths of 10 nitrogenated polycyclic aromatic hydrocarbon (PANH ) radical cations isolated in an argon matrix are presented and compared with the spectra of their parent polycyclic aromatic hydrocarbon (PAH ) radical cations. The 0.7Y2.5 m (14,500Y 4000 cm À1 ) spectrum for the open-shell cation forms of two nitrogenated anthracenes (C 13 H 9 N and C 12 H 8 N 2 ), four isomeric nitrogenated benzanthracenes (C 17 H 11 N ), and four isomeric nitrogenated dibenzanthracenes (C 21 H 13 N ) are reported. These ionized PANHs have allowed electronic transitions that give rise to strong absorption bands in the NIR. Low-lying excited states for these PANH ions are computed using time-dependent density functional theory (TDDFT). The resulting vertical excitation spectrum characterizes the transitions, and leads to a simple model that predicts the qualitative trends in absorption energy. The direction of the shift depends on the position of the nitrogen atom within the PANH and the relative magnitudes of the donor and acceptor molecular orbitals involved in the transitions. As with nonnitrogenated PAHs, ionized interstellar PANHs can be expected to contribute to the mid-IR emission features from UV-rich as well as UV-poor regions, and add weak, broad band structure to the NIR region of the interstellar extinction curve.
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of THE BIGGER PICTURE With the rise of commercial spaceflight and prospective human missions to Mars, a wider health range of humans will enter space for longer spans and at higher exposure to environmental stressors than ever before. Numerous adverse health effects have been observed in space, including bone demineralization and skeletal muscle atrophy, among others. Scientists across the world are conducting space omics studies to develop countermeasures for safe and effective crewed space missions. However, optimal extraction of scientific insight from such data is contingent on improved standardization. In response, we founded ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance guidelines between space biologists globally. This paper informs scientists and data scientists from many fields about the challenges and future avenues of space omics and can serve as an introductory reference for new members in the space biology discipline. Concept: Basic principles of a new data science output observed and reported ll
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.