Angiogenesis is vital for tumor growth but in well-vascularized organs such as the lung its importance is unclear. This situation is complicated by the fact that the lung has two separate circulations, the pulmonary and the systemic bronchial circulation. There are few relevant animal models of non-small cell lung cancer, which can be used to study the lung’s complex circulations, and mice, lacking a systemic bronchial circulation cannot be used. We report here a novel orthotopic model of non-small cell lung cancer in rats, where we have studied the separate contributions of each of the two circulations for lung tumor growth. Results show that bronchial artery perfusion, quantified by fluorescent microspheres (206% increase in large tumors) or HRCT scans (276% increase in large tumors), parallels the growth in tumor volume, while pulmonary artery perfusion remained unchanged. Ablation of the bronchial artery after the initiation of tumor growth resulted in a decrease in tumor volume over a subsequent course of 4 weeks. These results demonstrate that while the existing pulmonary circulation can supply the metabolic needs for tumor initiation, further growth of the tumor requires angiogenesis from the highly proliferative bronchial circulation. This model may be useful to investigate new therapeutic approaches that target specifically the bronchial circulation.
Both systemic (tracheal and bronchial) and pulmonary circulations perfuse the lung. However, documentation of angiogenesis of either is complicated by the presence of the other. Well-documented angiogenesis of the systemic circulations have been identified in asthma, cystic fibrosis, chronic thromboembolism and primary carcinomas. Angiogenesis of the vasa vasorum, which are branches of bronchial arteries, is seen in the walls of large pulmonary vessels after a period of chronic hypoxia. Documentation of increased pulmonary capillaries has been shown in models of chronic hypoxia, after pneumonectomy and in some carcinomas. Although endothelial cell proliferation may occur as part of the repair process in several pulmonary diseases, it is separate from the unique establishment of new functional perfusing networks defined as angiogenesis. Identification of the mechanisms driving the expansion of new vascular beds in the adult needs further investigation. Yet the growth factors and molecular mechanisms of lung angiogenesis remain difficult to separate from underlying disease sequelae.
Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495-30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4-16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization.
Expanded and aberrant bronchial vascularity, a prominent feature of the chronic asthmatic airway, might explain persistent airway wall edema and sustained leukocyte recruitment. Since it is well established that there are causal relationships between exposure to house dust mite (HDM) and the development of asthma, determining the effects of HDM in rats, mammals with a bronchial vasculature similar to humans, provides an opportunity to study the effects of bronchial angiogenesis on airway function directly. We studied rats exposed bi-weekly to HDM (Der p 1; 50μg/challenge by intranasal aspiration, 1,2,3 wks) and measured the time course of appearance of increased blood vessels within the airway wall. Results demonstrated that within 3 wks of HDM exposure, the number of vessels counted within airway walls of bronchial airways (0.5–3 mm perimeter) increased significantly. These vascular changes were accompanied by increased airway responsiveness to methacholine. A shorter exposure regimen (2 wks of bi-weekly exposure) was insufficient to cause a significant increase in functional vessels or reactivity. Yet, 19F/1H MR imaging at 3T following αvβ3-targeted perfluorocarbon nanoparticle infusion revealed a significant increase in 19F signal in rat airways after 2 wks of bi-weekly HDM, suggesting earlier activation of the process of neovascularization. Although many antigen-induced mouse models exist, mice lack a bronchial vasculature, and consequently lack the requisite human parallels to study bronchial edema. Overall our results provide an important new model to study the impact of bronchial angiogenesis on chronic inflammation and airways hyperreactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.