The network design problem in liner shipping is of increasing importance in a strongly competitive market where potential cost reductions can influence market share and profits significantly. In this paper the network design and fleet assignment problems are combined into a mixed integer linear programming model minimizing the overall cost. To better reflect the real-life situation we take into account the cost of transhipment, a heterogeneous fleet, route dependant capacities, and butterfly routes. To the best of our knowledge it is the first time an exact solution method to the problem considers transhipment cost. The problem is solved with branch-and-cut using clover and transhipment inequalities. Computational results are reported for instances with up to 15 ports.
Shortest path problems appear as subproblems in numerous optimization problems. In most papers concerning multiple objective shortest path problems, additivity of the objective is a de-facto assumption, but in many real-life situations objectives and criteria, can be non-additive. The purpose of this paper is to give a general framework for dominance tests for problems involving a number of non-additive criteria. These dominance tests can help eliminate paths in a dynamic programming framework when using multiple objectives. Results on real-life multi-objective problems containing non-additive criteria are reported. We show that in many cases the framework can be used to efficiently reduce the number of generated paths.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.