Using a fluorescence-based method, we have determined the number of thiol-derivatized single-stranded oligonucleotides bound to gold nanoparticles and their extent of hybridization with complementary oligonucleotides in solution. Oligonucleotide surface coverages of hexanethiol 12-mer oligonucleotides on gold nanoparticles (34 +/- 1 pmol/cm2) were significantly higher than on planar gold thin films (18 +/- 3 pmol/cm2), while the percentage of hybridizable strands on the gold nanoparticles (1.3 +/- 0.3 pmol/cm2, 4%) was lower than for gold thin films (6 +/- 2 pmol/cm2, 33%). A gradual increase in electrolyte concentration over the course of oligonucleotide deposition significantly increases surface coverage and consequently particle stability. In addition, oligonucleotide spacer sequences improve the hybridization efficiency of oligonucleotide-modified nanoparticles from approximately 4 to 44%. The surface coverage of recognition strands can be tailored using coadsorbed diluent oligonucleotides. This provides a means of indirectly controlling the average number of hybridized strands per nanoparticle. The work presented here has important implications with regard to understanding interactions between modified oligonucleotides and metal nanoparticles, as well as optimizing the sensitivity of gold nanoparticle-based oligonucleotide detection methods.
The use of direct-write dip-pen nanolithography (DPN) to generate covalently anchored, nanoscale patterns of oligonucleotides on both metallic and insulating substrates is described. Modification of DNA with hexanethiol groups allowed patterning on gold, and oligonucleotides bearing 5'-terminal acrylamide groups could be patterned on derivatized silica. Feature sizes ranging from many micrometers to less than 100 nanometers were achieved, and the resulting patterns exhibited the sequence-specific binding properties of the DNA from which they were composed. The patterns can be used to direct the assembly of individual oligonucleotide-modified particles on a surface, and the deposition of multiple DNA sequences in a single array is demonstrated.
Gold nanoparticles, ca. 30 Å in diameter, have been derivatized with specifically deuterated (position 1 and positions 10 to 13) and perdeuterated (positions 2 to 18) octadecanethiols (C 18 SH). The phase behavior of the octadecanethiolate monolayers chemisorbed onto the colloidal gold surface was characterized by differential scanning calorimetry (DSC). The DSC thermograms show that the C 18 SH-derivatized Au nanoparticles undergo distinct phase transitions which can be associated with the reversible disordering of the alkyl chains. Despite the highly curved geometry of these Au particles, there is a remarkable degree of conformational order in the alkanethiolate chains and the thermotropic behavior of the thiol-modified gold nanoparticles is very similar to that of conventional, planar self-assembled monolayers. Both the peak maximum temperature and the enthalpy associated with the DSC transition strongly parallel those of the gel-to-liquid crystalline transition of n-diacylphosphatidylcholine lipid bilayer membranes of equivalent chain length. Restricted chain mobility due to covalent bonding of the sulfur head group to the gold surface does not affect the cooperativity of the transition in terms of the transition temperature and enthalpy. Local chain ordering and dynamics in the deuterated C 18 S/Au nanoparticles have been probed using variable-temperature solid-state deuterium NMR spectroscopy and transmission FT-IR spectroscopy. The temperature dependence of the symmetric CD 2 stretching frequency has confirmed that the DSC-detected phase transition involves a thermallyinduced change from a predominantly all-trans conformation to a chain disordered state. A comparison of the thermal behavior of d 35 -C 18 S/Au and 10, 10,11,11,12,12,13,13-d 8 -C 18 S/Au shows that disordering originates in the chain terminus region and propagates toward the middle of the chain as the temperature increases. Studies of 1,1-d 2 -C 18 S/Au show that the disorder does not extend to the tethered sulfur head group. Deuterium NMR spectroscopy specifically establishes that chain melting arises from an increased frequency of gauche bonds in the alkanethiolate chains. The 2 H NMR line shapes further indicate that the tethered alkanethiolate chains are undergoing rapid transgauche bond isomerization and axial chain rotation.
: Self-assembled monolayers (SAMs) of n-alkanethiolates on gold, silver, and copper have been intensively studied both as model organic surfaces and as modulators of metal surface properties. Sensitivity restrictions imposed by monolayer coverage and the low surface area of planar metal substrates, however, limit the characterization of these films in molecualar terms to surface enhancement techniques. As a result, key aspects such as film dynamics and alkyl chain ordering remain ill-defined. The characterization of the thermal behavior of SAMs is important not only for the design of stable, well-ordered organic superlattices, but also for the fundamental understanding of the factors that drive molecular interactions in two dimensions. Phase properties in SAMs have been addressed here through the synthesis of gold nanoparticles of 20-30 A in diameter and fully covered with alkylthiol chains. These thiolmodified gold nanoparticles with large surface areas have enabled the monolayer film structure to be uniquely characterized by transmission FT-IR spectroscopy, NMR spectroscopy, and differential scanning calorimetry. Our studies reveal that for long-chain thiols ( 2 C,,), the alkyl chains exist predominantly in an extended, all-trans ordered conformation at 25 "C. Furthermore, calorimetry, variable
The structure and dynamical behavior of short and long chain alkanethiols, CH3(CH2)7SH and CH3(CH)17SH, and of a hydroxyalkanethiol, HO(CH2)16SH, adsorbed onto gold nanoparticles were studied by variable temperature solid-state 13C NMR spectroscopy. In both the solution and solid state, the resonances of the first three carbons next to the sulfur headgroup disappear upon binding to the gold, indicating a strong interaction with the surface. A 13C-enriched sample, CH3(CH2)12*CH2SH/gold, displays a broad resonance centered at 42 ppm for the carbon next to the sulfur headgroup. Whereas the solid-state 13C shifts of CH3(CH2)7SH/gold are essentially the same as in solution, the methylene carbons of CH3(CH2)17SH and HO(CH2)16SH/gold shift downfield by 4.5 ppm in the solid state, indicating that the chains crystallize into an extended all-trans conformation. The high conformational order, along with reduced methylene proton line widths in the CH3(CH)17SH/gold sample, indicates that the chains are undergoing large-amplitude motions about their long axes. Molecular mobility increases toward the unbound ends which have a higher population of gauche conformers. Relaxation measurements show the coexistence of motionally restricted all-trans chains and a smaller population of liquid-like conformationally disordered chains in CH3(CH2)17SH/gold at room temperature. The two types of chains are proposed to arise from close packing of the gold colloidal spheres, resulting in interstitial spaces and regions where chains of neighboring colloids can interdigitate to produce ordered domains. Phase transitions of the thiol-capped gold nanocrystals, which are detected by differential scanning calorimetry, are shown to involve a reversible disordering of the alkyl chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.