A century-old tenet in physics and engineering asserts that any type of system, having bandwidth Δω, can interact with a wave over only a constrained time period Δ inversely proportional to the bandwidth (Δ·Δω ~ 2π). This law severely limits the generic capabilities of all types of resonant and wave-guiding systems in photonics, cavity quantum electrodynamics and optomechanics, acoustics, continuum mechanics, and atomic and optical physics but is thought to be completely fundamental, arising from basic Fourier reciprocity. We propose that this "fundamental" limit can be overcome in systems where Lorentz reciprocity is broken. As a system becomes more asymmetric in its transport properties, the degree to which the limit can be surpassed becomes greater. By way of example, we theoretically demonstrate how, in an astutely designed magnetized semiconductor heterostructure, the above limit can be exceeded by orders of magnitude by using realistic material parameters. Our findings revise prevailing paradigms for linear, time-invariant resonant systems, challenging the doctrine that high-quality resonances must invariably be narrowband and providing the possibility of developing devices with unprecedentedly high time-bandwidth performance.
The characteristics of an imaging system formed by a left-handed material (LHM) slab of finite length are studied, and the influence of the finite length of the slab on the image quality is analyzed. Unusual phenomena such as surface bright spots and negative energy stream at the image side are observed and explained as the cavity effects of surface plasmons excited by the evanescent components of the incident field. For a thin LHM slab, the cavity effects are found rather sensitive to the length of the slab; the bright spots on the bottom surface of the slab may stretch to the image plane and degrade the image quality.
Based on a modal expansion of electromagnetic fields, a rigorous method for analyzing surface plasmon polaritons (SPPs) on a periodically corrugated metal surface has been formulated in this paper. This method takes into account the finite conductivity of the metal as well as higher-order modes within the grooves of the surface structure, thus is able to accurately calculate the loss of these spoof SPPs propagating along the structured surface. In the terahertz (THz) frequency range, the properties of the dispersion and loss of spoof SPPs on corrugated Al surfaces are analyzed. For spoof SPPs at THz frequencies, the strong confinement of the fields is often accompanied with considerable absorption loss, but the performance of both low-loss propagation and subwavelength field confinement for spoof SPPs can be achieved by the optimum design of surface structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.