Researchers have developed several theoretical methods for predicting epidemic thresholds, including the mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message passing (DMP) method. When these methods are applied to predict epidemic threshold they often produce differing results and their relative levels of accuracy are still unknown. We systematically analyze these two issues—relationships among differing results and levels of accuracy—by studying the susceptible-infected-recovered (SIR) model on uncorrelated configuration networks and a group of 56 real-world networks. In uncorrelated configuration networks the MFL and DMP methods yield identical predictions that are larger and more accurate than the prediction generated by the QMF method. As for the 56 real-world networks, the epidemic threshold obtained by the DMP method is more likely to reach the accurate epidemic threshold because it incorporates full network topology information and some dynamical correlations. We find that in most of the networks with positive degree-degree correlations, an eigenvector localized on the high k-core nodes, or a high level of clustering, the epidemic threshold predicted by the MFL method, which uses the degree distribution as the only input information, performs better than the other two methods.
The Identification of the influential nodes in networks is one of the most promising domains. In this paper, we present an improved iterative resource allocation (IIRA) method by considering the centrality information of neighbors and the influence of spreading rate for a target node. Comparing with the results of the Susceptible Infected Recovered (SIR) model for four real networks, the IIRA method could identify influential nodes more accurately than the tradition IRA method. Specially, in the Erdös network, the Kendall's tau could be enhanced 23% when the spreading rate is 0.12. In the Protein network, the Kendall's tau could be enhanced 24% when the spreading rate is 0.08.
What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.