Identifying influential nodes that lead to faster and wider spreading in complex networks is of theoretical and practical significance. The degree centrality method is very simple but of little relevance. Global metrics such as betweenness centrality and closeness centrality can better identify influential nodes, but are incapable to be applied in large-scale networks due to the computational complexity. In order to design an effective ranking method, we proposed a semi-local centrality measure as a tradeoff between the low-relevant degree centrality and other time-consuming measures. We use the Susceptible-Infected-Recovered (SIR) model to evaluate the performance by using the spreading rate and the number of infected nodes. Simulations on four real networks show that our method can well identify influential nodes.
Understanding the structure and evolution of web-based user-object networks is a significant task since they play a crucial role in e-commerce nowadays. This Letter reports the empirical analysis on two large-scale web sites, audioscrobbler.com and del.icio.us, where users are connected with music groups and bookmarks, respectively. The degree distributions and degreedegree correlations for both users and objects are reported. We propose a new index, named collaborative clustering coefficient, to quantify the clustering behavior based on the collaborative selection. Accordingly, the clustering properties and clustering-degree correlations are investigated. We report some novel phenomena well characterizing the selection mechanism of web users and outline the relevance of these phenomena to the information recommendation problem.
Collaborative tags are playing more and more important role for the organization of information systems. In this paper, we study a personalized recommendation model making use of the ternary relations among users, objects and tags. We propose a measure of user similarity based on his preference and tagging information. Two kinds of similarities between users are calculated by using a diffusion-based process, which are then integrated for recommendation. We test the proposed method in a standard collaborative filtering framework with three metrics: ranking score, Recall and Precision, and demonstrate that it performs better than the commonly used cosine similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.