Efficient signal amplification is essential to construct ultrasensitive biosensors for biologically relevant species with abundant concomitant interferences. Here, we apply LbaCas12a as a signal amplifier to develop a versatile CRISPR-Cas12a platform to detect a wide range of analytes in ultralow concentrations. The platform relies on the indiscriminate single-stranded DNase activity of LbaCas12a, which recognizes single-stranded DNA intermediates generated by non-DNA targets down to femtomolar concentrations and subsequently enhances the fluorescence signal output. With the help of functional nucleotides (DNAzyme and aptamer), ultrasensitive bioassays for Pb 2+ and Acinetobacter baumannii have been designed with a limit of detection down to ∼0.053 nM and ∼3 CFU/mL, respectively. It also allows simultaneous detection of four microRNAs (miRNAs) at a picomolar concentration without significant interferences by other counterparts, suggesting the potential of multiplexed miRNA expression profiles analysis in high throughput. Given the versatility and generality of the CRISPR-Cas12a platform, we expect the current work to advance the application of CRISPR-Cas-based platforms in bioanalysis and provide new insights into ultrasensitive biosensor design.
Amino acid-based biohybrids have been developed to self-assemble on the surface of desulfurizing bacteria to form nanothin and nanoporous shells. The shells not only endow the encapsulated cells with reusability, but also offer platforms to incorporate titania and magnetic nanoparticles to improve the desulfurizing activity and the separation efficiency.
DNA strand displacement plays an essential role in the field of dynamic DNA nanotechnology. However, flexible regulation of strand displacement remains a significant challenge. Most previous regulatory tools focused on controllable activation of toehold and thus limited the design flexibility. Here, we introduce a regulatory tool termed cooperative branch migration (CBM), through which DNA strand displacement can be controlled by regulating the complementarity of branch migration domains. CBM shows perfect compatibility with the majority of existing regulatory tools, and when combined with forked toehold, it permits continuous fine-tuning of the strand displacement rate spanning 5 orders of magnitude. CBM manifests multifunctional regulation ability, including rate fine-tuning, continuous dynamic regulation, reaction resetting, and selective activation. To exemplify the powerful function, we also constructed a nested iffunction signal processing system on the basis of cascading CBM reactions. We believe that the proposed regulatory strategy would effectively enrich the DNA strand displacement toolbox and ultimately promote the construction of DNA machines of higher complexity in nucleic acid research and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.