Hyperentangled-Bell-state analysis (HBSA) represents a key step in many quantum information processing schemes that utilize hyperentangled states. In this paper, we present a complete and faithful HBSA scheme for two-photon quantum systems hyperentangled in both the polarization and spatial-mode degrees of freedom, using a failure-heralded and fidelity-robust quantum swap gate for the polarization states of two photons (P-SWAP gate), constructed with a singly charged semiconductor quantum dot (QD) in a double-sided optical microcavity (double-sided QD-cavity system) and some linear-optical elements. Compared with the previously proposed complete HBSA schemes using different auxiliary tools such as parity-check quantum nondemonlition detectors or additional entangled states, our scheme significantly simplifies the analysis process and saves the quantum resource. Unlike the previous schemes based on the ideal optical giant circular birefringence induced by a single-electron spin in a double-sided QD-cavity system, our scheme guarantees the robust fidelity and relaxes the requirement on the QD-cavity parameters. These features indicate that our scheme may be more feasible and useful in practical applications based on the photonic hyperentanglement.
Photonic hyper-parallel quantum information processing (QIP) can simplify the quantum circuit and improve the information-processing speed, as well as reduce the quantum resource consumption and suppress the photonic dissipation noise. Here, utilizing the singly charged semiconductor quantum dot (QD) inside single-sided optical microcavity as the potentially experimental platform, we propose five schemes for heralded four-qubit hyper-controlled-not (hyper-CNOT) gates, covering all cases of four-qubit hyper-CNOT gates operated on both the polarization and spatial-mode degrees of freedom (DoFs) of a two-photon system. The novel heralding mechanism improves the fidelity of each hyper-CNOT gate to unity in principle without the strict restriction of strong coupling. The adaptability and scalability of the schemes make the hyper-CNOT gates more accessible under current experimental technologies. These heralded high-fidelity photonic hyper-CNOT gates can therefore have immense utilization potentials in high-capacity quantum communication and fast quantum computing, which are of far-reaching significance for QIP.
Semiconductor quantum‐dot (QD) spins hold great promise in quantum information science and technology. The implementation of high‐fidelity quantum gates on QD‐spin qubits is of great importance. Here, two schemes are presented to implement two universal quantum controlled gates, that is, the two‐qubit controlled‐not gate and the three‐qubit Toffoli gate, on stationary electron‐spin qubits in QDs inside single‐sided optical microcavities, based on the cavity‐assisted photon scattering under the balance condition. Compared with the previous schemes based on the ideal giant circular birefringence, the present schemes use the balance condition of the single‐sided QD‐cavity system, which can be achieved in both the weak‐ and strong‐coupling regimes of cavity quantum electrodynamics. Under the balance condition, the noise caused by the unbalanced reflectance between the coupled and uncoupled QD‐cavity systems can be efficiently depressed, so that the fidelity of each quantum gate operation can be increased to unity in principle. The schemes exhibit the possibility of realizing high‐fidelity and scalable quantum computing with single QD spins and single photons using the feasible and robust light–matter quantum interface. These high‐fidelity quantum controlled gates can lead to more efficient construction of quantum circuits for quantum computing, and provide a convenient avenue for quantum networking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.