Hepatitis B is the most common serious liver infection in the world. To date, there is still no complete cure for chronic hepatitis B. Natural caffeic acid analogues possess prominent antiviral activity, especially anti-hepatitis B virus (HBV) and anti-human immunodeficiency virus effects. Cichoric acid is a caffeic acid derivative from Cichorium intybus. In the study, the anti-hepatitis B property of cichoric acid was evaluated by the D-galactosamine (D-GalN)-induced normal human HL-7702 hepatocyte injury model, the duck hepatitis B virus (DHBV)-infected duck fetal hepatocytes and the HBV-transfected cell line HepG2.2.15 cells, respectively. The results showed that cichoric acid attenuated significantly D-GalN-induced HL-7702 hepatocyte injury at 10-100 µg/mL and produced a maximum protection rate of 56.26%. Moreover, cichoric acid at 1-100 µg/mL inhibited markedly DHBV DNA replication in infected duck fetal hepatocytes. Also, cichoric acid at 10-100 µg/mL reduced significantly the hepatitis B surface and envelope antigen levels in HepG2.2.15 cells and produced the maximum inhibition rates of 79.94% and 76.41%, respectively. Meanwhile, test compound at 50-100 µg/mL inhibited markedly HBV DNA replication. In conclusion, this study verifies the antihepatitis B effect of cichoric acid from Cichorium intybus leaves. In addition, cichoric acid could be used to design the antiviral agents.
Heme oxygenase‑1 (HO‑1) possesses significant potential as a drug target for hepatitis B, which may be transferable to patient therapy. The aim of the present study was to clarify the dynamic correlation between the hepatitis B virus (HBV) and HO‑1. The levels of HBV replication and expression of HO‑1 were investigated in HepG2.2.15 hepatoma cells following exposure to 5‑50 µM hemin for 1‑6 days. The mRNA expression levels of HO‑1 were then detected using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). HBV replication levels were determined by enzyme‑immunoassay and a PCR‑fluorescence quantitation assay. The results of the present study demonstrated that the mRNA expression levels of HO‑1 increased in a dose‑dependent manner in the HepG2.2.15 cells, following exposure to 5‑50 µM hemin. The mRNA expression levels of HO‑1 reached a peak following exposure of the cells to hemin for three days, subsequently the expression of HO‑1 decreased. Following exposure to hemin at an optimal concentration of 50 µM for 1‑6 days, the levels of the hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the cells were significantly reduced. This marked reduction in the expression of HBsAg and HBeAg reached its peak on the first day, following which the inhibition weakened as the duration of exposure increased. In addition, the inhibition of HBV DNA replication increased with the a longer duration of exposure. Furthermore, HBV DNA levels were significantly decreased following exposure to hemin for 3‑6 days. In conclusion, the present study demonstrated that induced expression of HO‑1 interfered with HBV replication in a dose and time‑dependent manner, implying that a reduction of the HBV viral load may contribute to upregulation in the expression of HO‑1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.