This paper reviews the NTIRE 2022 challenge on night photography rendering. The challenge solicited solutions that processed RAW camera images captured in night scenes to produce a photo-finished output image encoded in the standard RGB (sRGB) space. Given the subjective nature of this task, the proposed solutions were evaluated based on the mean opinions of viewers asked to judge the visual appearance of the results. Michael Freeman, a world-renowned photographer, further ranked the solutions with the highest mean opinion scores. A total of 13 teams competed in the final phase of the challenge. The proposed methods provided by the participating teams represent state-of-the-art performance in nighttime photography. Results from the various teams can be found here: https://nightimaging.org/
In this paper, we present a ranking-based underwater image quality assessment (UIQA) method, abbreviated as URanker. The URanker is built on the efficient conv-attentional image Transformer. In terms of underwater images, we specially devise (1) the histogram prior that embeds the color distribution of an underwater image as histogram token to attend global degradation and (2) the dynamic cross-scale correspondence to model local degradation. The final prediction depends on the class tokens from different scales, which comprehensively considers multi-scale dependencies. With the margin ranking loss, our URanker can accurately rank the order of underwater images of the same scene enhanced by different underwater image enhancement (UIE) algorithms according to their visual quality. To achieve that, we also contribute a dataset, URankerSet, containing sufficient results enhanced by different UIE algorithms and the corresponding perceptual rankings, to train our URanker. Apart from the good performance of URanker, we found that a simple U-shape UIE network can obtain promising performance when it is coupled with our pre-trained URanker as additional supervision. In addition, we also propose a normalization tail that can significantly improve the performance of UIE networks. Extensive experiments demonstrate the state-of-the-art performance of our method. The key designs of our method are discussed. Our code and dataset are available at https://li-chongyi.github.io/URanker_files/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.