Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe1−xTex(0<x<0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe1−xTex samples, 0.09<x<0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.
An experimental method is designed to test the Dispersive Extinction Theory (DET). It has been shown that the cosmic redshift is dependent not only on the distance, but also on the wavelength and the line width. Such dependence is fundamentally different from what was predicted by the Big Bang Theory (BBT) and can be used to test DET experimentally. It has also been shown that a new S-function, instead of the redshift, is solely dependent on distance and independent of wavelength and line width. The issue of line identification for quasars is also discussed according to DET.Resume: Une méthode expérimentale est conçue pour mettre à l'épreuve la Théorie de Disparition Dispersive (DET). On a montré que le glissement rouge cosmique ne dépend pas seulement de la distance, mais aussi de la longueur de l'onde et de la largeur de la ligne. Une telle dependence est fondamentalement différente de celle prévue par la théorie "Big Bang" (BBT), et permet de mettre à l'épreuve expérimentalement la Théorie de Disparition Dispersive (DET). On a aussi montré qu'une nouvelle S fonction, au lieu du glissement rouge, ne dépend que de la distance indépendemment de la longueur de l'onde et de la largeur de la ligne. La question de l'identification de ligne pour des quasars est aussi discutée selon la Théorie de Disparition Dispersive (DET).
The dispersive extinction theory (DET) offers an alternative interpretation to the cosmic red shift and, therefore, an alternative cosmology to the currently prevailing theory of Big Bang [L. J. Wang, Phys. Essays 18, 177 (2005)]. In our original paper where the DET was first proposed, only the unsaturated extinction was treated. In this article, we present a saturated dispersive extinction theory for the situation when the space medium is very thin and the light intensity is high enough to saturate the absorption and scattering. In such case, the energy absorbed is simply a function of the distance traveled regardless of the beam intensity. The space medium would look almost transparent to a very bright star until the inverse square law and the saturated extinction have reduced its intensity to certain threshold. An analysis of the relationship between the redshift and the intensity reduction shows that the extinction in the intergalactic and the interstellar medium must be saturated. The unsaturated extinction takes place only in the last stage of the light travel near the solar system.Résumé: La théorie dispersive d'extinction nous offre une interprétation alternative au décalage vers le rouge cosmique, donc une cosmologie alternative à la théorie du Big Bang [L. J. Wang, Phys. Essays 18, 177 (2005)]. Dans notre premier article où la théorie DET fut proposée pour la première fois, seulement la disparition non saturée a été discutée. Dans cet article, nous présentons une théorie Saturée Dispersive d'Extinction pour la situation quand le milieu de l'espace est très mince et l'intensité de la lumière est assez élevée pour saturer l'absorption et la diffusion. Dans ce cas, l'énergie absorbée est simplement une fonction de la distance parcourue indépendamment de l'intensité du faisceau. Le milieu de l'espace paraîtrait presque transparent à une étoile très brillante jusqu'à ce que la loi carrée inverse et l'extinction saturée aient réduit son intensité à un certain seuil. Une analyse du rapport entre le décalage vers le rouge et la réduction de l'intensité montre que l'extinction dans le milieu intergalactique et interstellaire doit être saturée. L'extinction non saturée n'a lieu qu'à la dernière étape du voyage de la lumière en proximité du système solaire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.