Traditional hot-stamping products have super-high strength, but their plasticity is usually low and their integrated mechanical properties are not excellent. Functionally graded property structures, a relatively novel configuration with a higher material utilization rate, have increasingly captured the attention of researchers. Hot stamping parts with tailored properties display the characteristics of local high strength and high plasticity, which can make up for the limitations of conventional hot stamping and optimize the crash safety performance of vehicles. This new idea provides a means of personalized control in the hot-stamping process. In this paper, a new strategy of local induction heating and press hardening was used for the hot stamping of boron steel parts with tailored properties, of which the microstructure from the hard zone to the soft zone shows a gradient distribution consisting of a martensite phase, multiphase and initial phase, with the hardness ranging from 550 HV to 180 HV. The re-deformation characteristics of hot stamping parts with tailored properties have been studied through the uniaxial tensile test, in cooperation with digital image correlation (DIC) and electron backscattered diffraction (EBSD) techniques. The experiments show that there are easily observable strain distribution characteristics in the re-deformation of hot stamping parts with tailored properties. In the process of tensile deformation, the initial phase zone takes the role of deformation and energy absorption, with the maximum strain before necking reaching 0.32. The local misorientation of this zone was high, and a large number of low angle grain boundaries were formed, while the proportion of small angle grain boundaries increased from 13.5% to 63.3%, and the average grain size decreased from 8.15 μm to 3.43 μm. Meanwhile, the martensite zone takes on the role of anti-collision protection, with a maximum strain of only 0.006, and its local misorientation is mostly unchanged. The re-deformation experimental results show that the hot stamping of boron steel parts with tailored properties meets the functional requirements of a hard zone for anti-collision and a soft zone for energy absorption, suitable for automobile safety parts.
High temperature confocal laser scanning microscopy (CLSM) was used to investigate the microstructure evolution of high-strength boron steel 22MnB5 during hot stamping. The experimental results show that it is complete austenitized at temperatures about 810 °C during the heating process. Most of the initial austenite grain size is small and locally coarse. At 920 °C to 1000 °C, the phenomenon of B remelted and solidified was observed which played a very good pinning role at the austenite grain boundary, preventing coarsening of austenite grains. The segregation of B and the addition of Mn result in a significant reduction in both the minimum boron reverse melt content and the final solidification temperature. In the continuous cooling stage, martensitic transformation occurs at the cooling rate of 60 °C/s, and the martensite start point is 400 °C and martensite finish point is 280 °C. A large number of bursts are concentrated from 380 °C to 330 °C. There are two main forms of martensitic transformation: first, martensite begins to appear at the coarse austenite grain boundary, and grows transgranularly. Second, the new martensite laths starts from the previously formed laths and grows at a certain angle into the austenite grains. The main factor in the increase of martensite in continuous cooling is the formation of variable temperature martensite rather than the growth of martensite laths. At the cooling rate of 20 °C/s, the bainite and ferrite transformation appeared and the conversion temperature of bainite was about 600 °C. The cooling speed has a great influence on the performance of the 22MnB5 hot stamping component. The room temperature microhardness at cooling rates of 5 °C/s, 20 °C/s, and 60 °C/s was 194 HV, 243 HV, and 430 HV, respectively. Therefore, ensuring sufficient cooling rate is a key condition for obtaining ultra-high strength hot stamping components.
On the foundation of taking equipment and production technology into consideration,we present a set of combined setting technology of the parameter of the strip suit to cold reduction mill of roll four and framework five。Then the parameter of the strip was controlled combined and coordinated of framework 1-5. On the one hand,it ensures the function of the force of the bending roll not cancel out mutually,and enhances the controlled effect of the force of the bending roll in the strip,on the other hand, there will not be new extra and partial shape wave under the complex effect of the force of the bending roll.Meanwhile there will not be the problem that the force of the bending roll in some parts get too high even overall loading while the other parts get get too low in the setting procedure.While improving the lifespan of the fluid cylinder, the adjusting rest of the force of the bending roll get increased. While the related technology has been adopted by field engineering, we have achieved excellent result, and there is the value for more expanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.