Plasmonic photocatalyst Ag/AgCl was prepared by in situ hydrothermal method with the contribution of 1-octyl-3-methylimidazolium chloride ([Omim]Cl), in which the [Omim]Cl ionic liquid acted not only as a precursor but also as a reducing reagent in the process of formation of Ag⁰. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric and differential scanning calorimetry (TG-DSC). The photocatalytic activity of the composites were evaluated by degradation of methyl orange (MO) under visible light irradiation. The experimental results showed that the high activity and stability of Ag/AgCl photocatalysts under visible-light irradiation were due to their localized surface plasmon resonance (LSPR). Based on the characterization of the structure and photocatalytic performance, the LSPR was determined by synergetic effect of many factors, such as particle size of metallic Ag, contents of the Ag⁰ nanoparticles, and the extent of metallic Ag dispersing. A photocatalytic mechanism of the Ag/AgCl photocatalyst was also proposed.
Platensimycin (PTM) and platencin (PTN), isolated from several strains of Streptomyces platensis, are potent antibiotics against multi-drug resistant bacteria. PTM was also shown to have antidiabetic and antisteatotic activities in mouse models. Through a novel genome-mining method, we have recently identified six PTM and PTN dual-producing strains, and generated several mutants with improved production of PTM or PTN by inactivating the pathway-specific transcriptional repressor gene ptmR1. Among them, S. platensis SB12026 gave the highest titer of 310 mg/L for PTM. In this study, we now report titer improvement by medium and fermentation optimization and pilot-scale production and isolation of PTM from SB12026. The fermentation medium optimization was achieved by manipulating the carbon and nitrogen sources, as well as the inorganic salts. The highest titer of 1560 mg/L PTM was obtained in 15-L fermentors, using a formulated medium mainly containing soluble starch, soybean flour, morpholinepropanesulfonic acid sodium salt and CaCO3. In addition, a polyamide chromatographic step was applied to facilitate the purification and 45.14 g of PTM was successfully obtained from a 60 L scale fermentation. These results would speed up the future development of PTM as human medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.