Sulphuric acid-modified bagasse has been used as low-cost adsorbent for the removal of methylene blue (MB) dye from aqueous solution. In order to remove organic compounds that contribute to chemical oxygen demand (COD), pretreatment with thorough washing of adsorbent using boiling distilled water was performed instead of conventional washing using distilled water at room temperature only. This has resulted in the highest efficiency of color removal of 99.45% and COD reduction of 99.36% for MB dye solution at pH 9. Effects of initial pH, dye concentration, adsorbent dosage, temperature, and contact time have been studied. The adsorption of MB dye was pH dependent. Langmuir and Freundlich isotherm models were tested on the adsorption data. The kinetic experimental data were analyzed using pseudo-first order, pseudo-second order, and the intraparticle diffusion model in order to examine the adsorption mechanisms. The adsorption process followed the Langmuir isotherm as well as the Freundlich isotherm and pseudosecond-order kinetic model. The process was found to be endothermic in nature.
The performance of raw bagasse (RB), and tartaric acid-modified bagasse (TAMB) as adsorbents on decolorization and chemical oxygen demand (COD) reduction of methylene blue (MB) aqueous solution was studied. The effects of five factors namely: adsorbent dosage, pH, shaking speed, contact time, and temperature on decolorization and COD reduction were studied and optimized using central composite design (CCD). The results of the analysis show that all selected factors exhibit significant effect on decolorization and COD reduction. Maximum decolorization (78.16%) and COD reduction (77.95%) for RB was achieved at 0.82 g of adsorbent dosage, pH 9.4, 122 rpm of shaking speed, 44 min of contact time, and 55°C. For TAMB, maximum decolorization (99.05%) and COD reduction (98.45%) was achieved at 0.78 g adsorbent dosage, pH 9.4, shaking speed of 120 rpm, 34 min contact time, and 49°C. TAMB was found to be more effective than RB in decolorization and COD reduction of MB aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.