The aim of this study was to elucidate the epidemiology of third generation cephalosporin resistant Samonella isolates from pork of a slaughterhouse in China and the features of transferable elements carrying blaCTX-M genes. One hundred and twenty-six (7.3%) Salmonella isolates were identified; S. Derby and S. Rissen were the most two prevalent serotypes. Among these isolates 20 (15.8%) were resistant to third generation cephalosporins and nine of them carried blaCTX-M-27. S1-PFGE and replicon typing of blaCTX-M-27-carrying plasmids showed that seven were untypeable plasmids of about 104 Kb and two were IncP plasmids of about 300 Kb. Complete sequence analysis of one PBRT-untypeable plasmid showed it was a P1-like bateriophage, named SJ46, which contained a non-phage-associated region with several mobile elements, including Tn1721, ISEcp1B and IS903D. The other six 104 Kb PBRT-untypeable blaCTX-M-27-carrying plasmids also harboured the same phage-insertion region of SJ46 suggesting that they were the same P1-like bacteriophage. PFGE profiles of the parental strains revealed both potential vertical and horizontal spread of this P1-like blaCTX-M-27-containing element. Additionally, the representative gene of the P1 family bacteriophage, repL, was detected in 19.0% (24/126) of the isolates. This study indicated a potential role of P1-family bacteriophage in capture and spread of antimicrobial resistance in pathogens.
Salmonella spp. is one of the most important food-borne pathogens causing digestive tract and invasive infections in both humans and animals. Extended-spectrum β-lactamases (ESBLs) especially the CTX-M-type ESBLs are increasingly being reported worldwide and in China. These studies seldom focused on Salmonella isolates from food-producing animals. The aim of this study was to characterize the antimicrobial resistance profiles, serotypes and ESBLs and in particular, CTX-M producing Salmonella isolates from chickens and pigs in China. Salmonella isolates were identified by API20E system and polymerase chain reaction (PCR) assay; serotypes were determined using slide agglutination with hyperimmune sera; antimicrobial susceptibility was tested using the ager dilution method; the prevalence of ESBLs and PMQR genes were screened by PCR; CTX-M-producing isolates were further characterized by conjugation along with genetic relatedness and plasmid replicon type. In total, 159 Salmonella strains were identified, among which 95 strains were Salmonella enterica serovar Typhimurium, 63 strains were S. enterica serovar Indiana, and 1 strain was S. enterica serovar Enteritidis. All of these isolates presented multi-drug resistant phenotypes. Forty-five isolates carried blaCTX-M genes, the most common subtype was CTX-M-27(34), followed by CTX-M-65(7) and CTX-M-14(4). Most blaCTX-M genes were transmitted by non-typeable or IncN/IncFIB/IncP/IncA/C/IncHI2 plasmids with sizes ranging from 80 to 280 kb. In particular, all the 14 non-typeable plasmids were carrying blaCTX-M-27 gene and had a similar size. PFGE profiles indicated that CTX-M-positive isolates were clonally related among the same serotype, whilst the isolates of different serotypes were genetically divergent. This suggested that both clonal spread of resistant strains and horizontal transmission of the resistance plasmids contributed to the dissemination of blaCTX-M-9G-positive Salmonella isolates. The presence and spread of CTX-M, especially the CTX-M-27 in S. enterica serovars Typhimurium and Indiana from food-producing animals poses a potential threat for public health. Control strategies to limit the dissemination of these strains through the food chain are necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.