Aboveground biomass (AGB) is an important indicator used to predict crop yield. Traditional spectral features or image textures have been proposed to estimate the AGB of crops, but they perform poorly at high biomass levels. This study thus evaluated the ability of spectral features, image textures, and their combinations to estimate winter wheat AGB. Spectral features were obtained from the wheat canopy reflectance spectra at 400–1000 nm, including original wavelengths and seven vegetation indices. Effective wavelengths (EWs) were screened through use of the successive projection algorithm, and the optimal vegetation index was selected by correlation analysis. Image texture features, including texture features and the normalized difference texture index, were extracted using gray level co-occurrence matrices. Effective variables, including the optimal texture subset (OTEXS) and optimal normalized difference texture index subset (ONDTIS), were selected by the ranking of feature importance using the random forest (RF) algorithm. Linear regression (LR), partial least squares regression (PLS), and RF were established to evaluate the relationship between each calculated feature and AGB. Results demonstrate that the ONDTIS with PLS based on the validation datasets exhibited better performance in estimating AGB for the post-seedling stage (R2 = 0.75, RMSE = 0.04). Moreover, the combinations of the OTEXS and EWs exhibited the highest prediction accuracy for the seeding stage when based on the PLS model (R2 = 0.94, RMSE = 0.01), the post-seedling stage when based on the LR model (R2 = 0.78, RMSE = 0.05), and for all stages when based on the RF model (R2 = 0.87, RMSE = 0.05). Hence, the combined use of spectral and image textures can effectively improve the accuracy of AGB estimation, especially at the post-seedling stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.