Chicken-pathogenic Escherichia coli is severely endangering the poultry industry in China and worldwide, and antibiotic therapy is facing an increasing problem of antibiotic resistance. Bacteriophages can kill bacteria with no known activity in human or animal cells, making them an attractive alternative to antibiotics. In this study, we present the characteristics of a novel virulent bacteriophage, Bp7, specifically infecting pathogenic multidrug-resistant E. coli. Phage Bp7 was isolated from chicken feces. Bp7 belongs to the family Myoviridae, possessing an elongated icosahedral head and contractile sheathed tail. It has a 168-kb doublestranded DNA genome. For larger yields, its optimal multiplicity of infection (MOI) to infect E. coli was about 0.001. The latent period was 10 to 15 min, and the burst size was 90 PFU/infected cell. It was stable both at pH 5.0 to 10.0 and at 40°C or 50°C for at least 1 h. Bp7 could infect 46% of pathogenic clinical E. coli strains. Bp7 harbored 791 open reading frames (ORFs) and 263 possible genes. Among the 263 genes, 199 possessed amino acid sequence identities with ORFs of phage T4, 62 had identities with other T4-like phages, and only one lacked any database match. The genome of Bp7 manifested obvious division and rearrangement compared to phages T4, JS98, and IME08. Bp7 is a new member of the "T4-like" genus, family Myoviridae. Its wide host range, strong cell-killing activity, and high stability to pH make it an alternative to antimicrobials for controlling drug-resistant E. coli in chickens. Chicken colibacillosis is one of the main bacterial diseases and severely endangers the poultry industry in China and worldwide. Escherichia coli has been identified as a major pathogen (1). Antibiotics are widely used to control chicken colibacillosis, but it is very common for E. coli to be resistant to antibiotics (2, 3). In recent years, nearly 80% of E. coli isolates from diseased animals have manifested severe resistance to antimicrobial drugs (4, 5), so antibiotic therapy is facing an increasing problem of antibiotic resistance. Bacteriophages are now considered a good alternative to antibiotics (6, 7).However, there are many problems with phage therapy, and not every phage strain is appropriate for such therapy. Based upon their replication methods, phages are classified as either virulent or lysogenic. Virulent phages replicate in their bacterial hosts and destroy them in the process, but lysogenic phages insert their genomes into their hosts' genomes (8). As it has turned out, both lysogenic and virulent bacteriophages are actively involved in the evolution of bacteria, including pathogens (9). A troubling possibility is that there are virulence genes in some phages and these genes can change the pathogenicity of their host bacteria. Lysogenic phages transfer genes that express toxin proteins or pathogenic factors among bacterial species (8, 10). For safety reasons, lysogenic phages are not allowed to be used in phage therapy, and if a phage is permitted to be an alternati...
Abstract. Ice clouds in the lowermost stratosphere affect stratospheric water vapour and the Earth's radiation budget. The knowledge of its occurrence and driving forces is limited. To assess the distribution and possible formation mechanisms of stratospheric ice clouds (SICs) over North America, we analysed SIC occurrence frequencies observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. Results show that at nighttime, SICs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with a maximum occurrence frequency of 6.2 %. During the months from November to February (NDJF), the highest SICs occurrence frequencies are 5.5 % over the north-eastern Pacific and western Canada and 4.4 % over the western North Atlantic. Occurrence frequencies of deep convection from AIRS, which includes storm systems, fronts, mesoscale convective systems, and mesoscale convective complexes at midlatitude and high latitude, show similar hotspots like the SICs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4 %) and over the north-eastern Pacific, western Canada, and the western North Atlantic in NDJF (∼ 2.5 %). Both, seasonal patterns and daily time series of SICs and deep convection show a high degree of spatial and temporal relation. Further analysis indicates that the maximum fraction of SICs related to deep convection is 74 % over the Great Plains in MJJA and about 50 % over the western North Atlantic, the north-eastern Pacific, and western Canada in NDJF. We conclude that, locally and regionally, deep convection is the leading factor related to the occurrence of SICs over North America. In this study, we also analysed the impact of gravity waves as another important factor related to the occurrence of SICs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In the cases where SICs are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate with SICs with as much as 30 % of the cases over the Great Plains in MJJA, about 50 % over the north-eastern Pacific and western Canada, and up to 90 % over eastern Canada and the north-west Atlantic in NDJF. Our results provide a better understanding of the physical processes and climate variability related to SICs and will be of interest for modellers as SIC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models.
In search of new materials to develop comfortable shoe sole, nowadays the researchers have resorted to the thermoplastic elastomers (TPEs) usually used as cushioning materials for its easy processability and adorable physical properties that can meet both the comfort as well as other functional requirements (i.e. fashion, ultralight, aging, etc.). TPEs are a class of copolymers or physical mixes of polymers and have the morphology of non-miscible blends of elastomer and thermoplastic matrix simultaneously. Low or room temperature elastomeric behavior and high temperature processablitiy makes TPE as a suitable material for developing lightweight and recyclable microcellular foams [1]. Most of the commercial TPE foams for footwear application are developed either from thermoplastic polyurethane (TPU) or ethylenevinyl acetate (EVA) copolymer in which the soft matrix provides sufficient free space for gas absorption whereas the rigid matrix prevents the gas diffusion during foaming process [2][3][4][5][6]. Styrene-(ethylene-cobutylene)-styrene polymers (SEBS) derived from the hydrogenation of styrene-butadiene-styrene (SES) polymers is a typical TPE which shows a better weather resistance, lower compression set, lower density, etc., can be a potential alternative of TPU or EVA [7,8]. SEBS consists of a soft midblock of ethylene-butylene (E-co-B) and hard end-blocks of 948 Abstract. Developing eco-friendly, flexible thermoplastic elastomeric foams based on poly(styrene-(ethylene-co-butylene)styrene) (SEBS) is a challenging task because of its poor melt strength. A promising approach to overcome this challenge is the use of synergistic technologies, such as combination of irradiation, supercritical fluid foaming, and steam-chest molding technologies. Herein, foamed beads were produced from pre-crosslinked SEBS beads using supercritical nitrogen as blowing agent, followed by subsequently efficient steam-chest molding to obtain midsole part. The crosslinking was accomplished under the assistance of electron beam. The rheology properties and foaming behavior reveals that the viscosity and modulus of the matrix increase with the increase of crosslinking resulting from increasing the irradiation dose (ID). With increasing the ID, successful foaming with larger expansion and improved cell morphology was achieved. SEBS bead foams were successfully obtained from 65 kGy-derived pre-crosslinked beads through steam-chest molding which showed a specific gravity of 0.252 g·cm -3 and comparable/superior mechanical properties to/than that of commercial thermoplastic polyurethane (TPU) or ethylene-vinyl acetate copolymer (EVA) foams. Especially, the higher elasticity and resilience of SEBS foams meet well the desirable properties for footwear application which supports SEBS to be an alternative for TPU or EVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.