BackgroundSymptoms of grapevine leafroll disease (GLRD) in red-fruited wine grape (Vitis vinifera L.) cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis.ResultsWe examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Using the geNorm program, a combination of two genes (Actin and NAD5) was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3) and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot). The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus-infected symptomatic leaves when compared to virus-free green leaves.ConclusionsThe results, the first example to our knowledge, showed that modulation of the flavonoid biosynthetic pathway occurred in GLRaV-3-infected leaves of a red-fruited wine grape cultivar (cv. Merlot) leading to de novo synthesis of two classes of anthocyanins. These anthocyanins have contributed to the expression of reddish-purple color of virus-infected grapevine leaves exhibiting GLRD symptoms.
CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) family of transcription factors in plants is reported to be associated with regulation of gene expression under stress conditions. Here, we report the functional characterization of a DREB transcription factor, DREB1B gene from rice (Oryza sativa ssp. indica). The OsDREB1B gene was differentially regulated at the transcriptional level by osmotic stress, oxidative stress, salicylic acid, ABA, and cold. A 745 bp promoter region of OsDREB1B cDNA was fused to the beta-glucuronidase (GUS) gene and introduced via Agrobacterium tumifaciens into the genome of Arabidopsis. Histochemical analysis of GUS expression in T(2) transgenic Arabidopsis plants indicated that OsDREB1B shows stress-specific induction pattern in response to a variety of stresses like mannitol, NaCl, PEG, methyl viologen, cold, ABA, and salicylic acid. Leaf-order-dependent induction pattern of the promoter was observed in response to both cold and ABA stresses. Further, OsDREB1B cDNA was introduced into tobacco plants under the control of CaMV35S promoter to investigate the role of DREB1B product in plant stress response. Transgenic tobacco plants have shown improved seed germination, root growth, membrane stability, and 2, 2-diphenyl-1-pycrilhydrazil hydrate (DPPH) free radical scavenging activity under inhibitory concentrations of mannitol. Importantly, transgenic plants accumulated higher fresh weight under long-term osmotic stress, and also have shown retention of more water than the wild type during drought stress. Overexpression of OsDREB1B in tobacco also improved the oxidative and freezing stress tolerance of transgenic plants. In addition, tobacco plants constitutively expressing OsDREB1B have shown decreased sensitivity to tobacco streak virus infection. Constitutive expression of OsDREB1B in tobacco also induced the expression of PR genes in transgenic plants. The data obtained provide strong in vivo evidence that OsDREB1B is involved in both abiotic and biotic stress responses, and confers broad-spectrum stress tolerance to transgenic plants.
Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.
Grapevine fanleaf virus (GFLV) was documented in self-rooted vines of four grapevine (Vitis vinifera) cultivars in eastern Washington. GFLV was found as mixed infection in cvs. Pinot Noir, Chardonnay, and Cabernet Franc and as single infections in cv. Merlot. Fanleaf disease symptoms were only observed in the first two cultivars. The spatial distribution of GFLV-infected grapevines was random, suggesting primary spread through planting virus-infected cuttings rather than infield transmission. RNA1 sequences of Washington isolates showed 87 to 89% nucleotide sequence identity between them and with strain F13. RNA2 of Washington isolates was variable in size, showing 85 to 99% sequence identity between them and 81 to 92% with other isolates. As in other GFLV isolates, three conserved putative stem-loop structures were present in the 5' noncoding regions of both RNAs of Washington isolates. Phylogenetic incongruence of GFLV isolates from Washington in 2A(HP)- and 2B(MP)-based trees and identification of putative recombination events suggested that their genomic RNA2 originated from inter- and intraspecies recombination events between GFLV, Grapevine deformation virus, and Arabis mosaic virus. These results confirm interspecies recombination in RNA2 of grapevine-infecting nepoviruses as an important strategy for GFLV evolution.
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzymelinked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein 123Transgenic Res (2018) 27:331-342 https://doi.org/10.1007/s11248-018-0077-y( 0123456789().,-volV) (0123456789().,-volV) concentrations due to location effects is captured in the current model of multi-location field testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.