Geographic object-based image analysis (GEOBIA) has been widely used in the remote sensing of agricultural crops. However, issues related to image segmentation, data redundancy and performance of different classification algorithms with GEOBIA have not been properly addressed in previous studies, thereby compromising the accuracy of subsequent thematic products. It is in this regard that the current study investigates the optimal scale parameter (SP) in multi-resolution segmentation, feature subset, and classification algorithm for use in GEOBIA based on multisource satellite imagery. For this purpose, a novel supervised optimal SP selection method was proposed based on information gain ratio, and was then compared with a preexisting unsupervised optimal SP selection method. Additionally, the recursive feature elimination (RFE) and enhanced RFE (EnRFE) algorithms were modified to generate an improved EnRFE (iEnRFE) algorithm, which was then compared with its precursors in the selection of optimal classification features. Based on the above, random forest (RF), gradient boosting decision tree (GBDT) and support vector machine (SVM) were applied to segmented objects for crop classification. The results indicated that the supervised optimal SP selection method is more suitable for application in heterogeneous land cover, whereas the unsupervised method proved more efficient as it does not require reference segmentation objects. The proposed iEnRFE method outperformed the preexisting EnRFE and RFE methods in optimal feature subset selection as it recorded the highest accuracy and less processing time. The RF, GBDT, and SVM algorithms achieved overall classification accuracies of 91.8%, 92.4%, and 90.5%, respectively. GBDT and RF recorded higher classification accuracies and utilized much less computational time than SVM and are, therefore, considered more suitable for crop classification requiring large numbers of image features. These results have shown that the proposed object-based crop classification scheme could provide a valuable reference for relevant applications of GEOBIA in crop recognition using multisource satellite imagery.
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.