Polar motion (PM) has a close relation to the Earth’s structure and composition, seasonal changes of the atmosphere and oceans, storage of waters, etc. As one of the four major space geodetic techniques, doppler orbitography and radiopositioning integrated by satellite (DORIS) is a mature technique that can monitor PM through precise ground station positioning. There are few articles that have analyzed the PM series derived by the DORIS solution in detail. The aim of this research was to assess the PM time-series based on the DORIS solution, to better capture the time-series. In this paper, Fourier fast transform (FFT) and singular spectrum analysis (SSA) were applied to analyze the 25 years of PM time-series solved by DORIS observation from January 1993 to January 2018, then accurately separate the trend terms and periodic signals, and finally precisely reconstruct the main components. To evaluate the PM time-series derived from DORIS, they were compared with those obtained from EOP 14 C04 (IAU2000). The results showed that the RMSs of the differences in PM between them were 1.594 mas and 1.465 mas in the X and Y directions, respectively. Spectrum analysis using FFT showed that the period of annual wobble was 0.998 years and that of the Chandler wobble was 1.181 years. During the SSA process, after singular value decomposition (SVD), the time-series was reconstructed using the eigenvalues and corresponding eigenvectors, and the results indicated that the trend term, annual wobble, and Chandler wobble components were accurately decomposed and reconstructed, and the component reconstruction results had a precision of 3.858 and 2.387 mas in the X and Y directions, respectively. In addition, the tests also gave reasonable explanations of the phenomena of peaks of differences between the PM parameters derived from DORIS and EOP 14 C04, trend terms, the Chandler wobble, and other signals detected by the SSA and FFT. This research will help the assessment and explanation of PM time-series and will offer a good method for the prediction of pole shifts.
HY-2A (Haiyang 2A) is the first altimetry satellite in China, and it was designed to be in a repeated ground track orbit to achieve the mission targets. Maneuvers are necessary to keep the satellite on the designed orbit according to the dynamic precise orbital prediction. Atmospheric density models are essential for predicting the low Earth orbit (LEO) satellites, such as HY-2A. Nevertheless, it is a complex process to determine the optimal atmospheric density model for orbit prediction. In this paper, short-term and long-term orbit predictions based on the dynamic method using three different atmospheric density models are tested. Detailed comparisons and evaluation of the accuracy of the predicted results are performed. Furthermore, to assess the results for the ground tracking of the satellite, the interpolation method especially for a spherical surface is introduced. The results show that among the three models, the Jacchia 1971 model is in the closest agreement with Multi-Mission Ground Segment for Altimetry precise positioning and Orbitography (SSALTO) precise orbits. The root-mean-squares (RMSs) of radial orbit differences between the predicted and precise orbits are 0.016 m, 0.091 m, 0.176 m, 0.573 m, and 1.421 m for predicted 1-h, 12-h, 1-day, 3-day, and 7-day arcs, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.