Abstract-The design of efficient packet scheduling algorithms, which play a key role in the radio resource management (RRM), is crucial for the multimedia delivery in the satellite digital multimedia broadcasting (SDMB) system. In this paper, a novel packet scheduling scheme, which uses the cross-layer approach in its design, is proposed. This scheme comprises a new service prioritization algorithm and a dynamic rate matching based resource allocation algorithm, aimed at utilizing both the applications' QoS attributes and the physical layer data rate information. The performance of the proposed scheme has been evaluated via simulation. In comparison with existing schemes, the proposed scheme achieves significant performance gain on delay, delay variation and physical channel utilization.Index Terms-Cross-layer design, DDQ, dynamic rate matching, packet scheduling, RRM, SDMB.
SUMMARYOne key aspect of digital multimedia broadcasting is the reliable point-to-multipoint distribution of content. Since the capacity and energy constraints in wireless environments do not favour the provision of a return channel for user feedback, the use of partial reliability techniques is often the only realistic option for the reliable transport layer design. In this paper, we focus on the two main reliable transport mechanisms in unidirectional, point-to-multipoint systems, namely packet-level forward error correction (FEC) and data carousels. We approach them as building components of an integrated scheme and investigate its performance via analytical means. Our analysis demonstrates that the network responsiveness, expressed by the average content access time, is optimized for certain packet-level FEC redundancy values. This is clearly different from setting FEC without considering the data carousel dimension, where the FEC redundancy is determined from the probability of recovering the whole file versus FEC overhead trade-off curves. We describe design alternatives for both scheme components, such as different FEC code types, rules for assigning FEC redundancy per carousel item, and ways to retrieve items from the data carousel, and evaluate their impact on the performance of the scheme. Our results suggest that the superposition of FEC on data carousels mitigates the otherwise significant impact of the data item retrieval technique on performance, at least for close-to-optimal FEC settings. On the contrary, the careful selection of FEC code and FEC redundancy assignment rule for data carousel items results in performance gains of up to 11 and 18% for the average content access time and FEC overhead, respectively, depending on the item demand and length distributions.
SUMMARYSatellite plays an important role in global information infrastructure (GII) and next generation networks (NGNs). Similarly, satellite communication systems have great advantages to support IPv6 (Internet Protocol version 6) networks as a technology that allows universal access to broadband e-services (audio, video, VPN, etc.). In the context of DVB-S2 (digital video broadcast-satellite) and DVB-RCS (digital video broadcast-return channel via satellite) standards, this paper presents the current SatSix project (satellitebased communications systems within IPv6 networks) within the European 6th Framework Programme, which is implementing innovative concepts and effective solutions (in relation with the economical cost) for broadband satellite systems and services using the technology presented above. This project is promoting the introduction of the IPv6 protocol into satellite-based communication systems.Moreover, through SatSix, the industry is addressing the next generation Internet, IPv6. It also enhances its competitive position in satellite broadband multimedia systems by exploiting the common components defined by the European DVB-S2 and DVB-RCS satellite broadband standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.