A simple one-step approach to electrospin Type I collagen in the presence of the chemical crosslinking agents 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) has been developed to generate water-insoluble collagen nanofiber scaffolds without the need for post-crosslinking. SEM images indicate that fibrous surface morphology of collagen scaffolds was well retained after the in situ crosslinking process and following water treatment. The resultant collagen demonstrated a similar uniaxial tensile behavior of native tissue in mechanical testing.
In an attempt to mimic properties of the polyanionic nanofibrous cortical layer (ectoplasm) of nerve, tube-shaped poly(acrylic acid) (PAA) nanofiber constructs were prepared via electrospinning. The influence of processing parameters on the morphology of the electrospun PAA nanofibers was systematically investigated. Smooth and uniform PAA nanofibers with average fiber diameter of 820 nm were produced at a concentration of 4 wt% with a flow rate of 0.8 mL h −1 when a high voltage of 15 kV was applied. Water-stable PAA nanofibers were obtained by thermally crosslinking PAA with ethylene glycol. The resulting tubes were neutralized to the sodium polyacrylate form and were shown to undergo reversible and abrupt length changes upon titration with CaCl 2 followed by titration with sodium citrate. The sharpness of the length transition was found to be highly dependent upon the bathing NaCl concentration and the operation temperature. It is suggested that electrospun PAA may be a promising candidate as a key element of an abiotic macromolecular mimic of selected properties of axons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.