3D ordered structures beyond microscale with targeted modification are catching increasing attention due to its application as tissue scaffolds. Especially scaffolds with necessary growth factors at designated locations are meaningful for induced cell differentiation and tissue formation. However, few fabrication methods can address the challenge of introducing bioactive species to the interior targeted places during the preparation process. Herein, for the first time macroscopic supramolecular assembly is applied to obtain such 3D ordered structures and established a proof‐of‐concept idea of complex scaffold with targeted modification. Taking strip‐like polydimethylsilicon building block as a model system, microscaled multilayered structures have been fabricated with parallel aligned building blocks in each layer. The morphology can be adjusted in a flexible way by tuning the number of layer, the space between two adjacent building blocks, and the position and orientation of each PDMS. The as‐prepared 3D structures are demonstrated biocompatible and potential as scaffolds for 3D cell culture. Moreover, bioactive species can be in situ incorporated into designated locations within the 3D structure precisely. In this way, a novel strategy is provided to address the current challenges in fabricating complex 3D tissue scaffolds with localized protein for future induced cell differentiation.
A novel pyrene covalently-attached polyoxometalate (POM) hybrid has been synthesized and fully characterized. The attractive electronic and photophysical properties of pyrene derivatives make the hybrid promising for studying and understanding electron transfer mechanisms in organic-functionalized POMs. The hybrid has an electronic absorption at 450 nm, indicating that there is a strong electronic interaction between the organic pyreneimido group and inorganic hexamolybdate cluster. The electron transfer mechanism of the as-prepared hybrid is illuminated via the combined studies of theoretical calculations and transient absorption spectroscopy. Time-dependent density functional theory studies revealed that the strong electronic absorption at the visible region mainly comes from the optically allowed π-π* transitions of the pyreneimido component (S(0) to S(2) transition). The electron transfer process from the excited pyreneimido moiety to the inorganic POM cluster is at the time scale of ~700 fs, which could be ascribed to the internal conversion of singlet excited states from S(2) state to S(1) state. This study provided a clear understanding of the mechanism governing the electron transfer process in organoimido derivatives of POMs. This result might offer a new route for the design of new charge transfer hybrid clusters of organic functionalized POMs and crucial guidance for their applications in optical and electrical devices.
Smart motions of objects from the submicrometer to millimeter scale through chemical control with stimulus‐responsive way are significant to achieve various applications. However, the intelligence of the current devices with chemical responding system remains to be improved; especially, achieving a round‐way motion is still a challenge. Therefore, two types of actuators are simultaneously integrated into single smart device at the opposite ends to achieve cooperated functions in an orderly manner. One actuator is the pH‐responsive power supply of hydrogen bubbles produced from the reaction between magnesium and HCl. The smart device undergoes on–off–on locomotion through control over the solution pH values by using the pH‐responsive actuator of magnesium–HCl system. The other actuator is the hydrogen peroxide‐responsive system of oxygen bubbles generated through the decomposition of hydrogen peroxide catalyzed by platinum aggregates. When introducing hydrogen peroxide solution into the system, the generated oxygen bubbles at the opposite end of the device to push the device backward for round‐way motions. For the first time, two different types of actuators are simultaneously integrated into single smart device without disturbing each other, which realize pH‐responsive round‐way motions of the smart device and improve the system intelligence for further applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.