We synthesized novel sodium alginate sulfates (SASs) with different sulfation degrees. All the SASs, DA-g-SASs, and coated substrates had good anticoagulant properties and biocompatibilit.
Implantation of a scaffold into the body in a safe and convenient manner remains a challenge in the repair of patient bone defect. In the present study, a strategy for fabrication of the redox-sensitive nanofibers with a core−shell structure that can deliver the growth factors in a tunable manner is presented. Poly(ethylene oxide) (PEO) and bone morphogenetic protein 2 (BMP-2) forms the inner core region, and a mixture of poly(epsilon-caprolactone) (PCL) and redox-responsive c-6A PEG−PCL nanogel with −S−S− bond forms the outer shell. The redox-sensitive shell of the nanofibers can respond the change of the GSH (glutathione) concentration and thus regulate the BMP-2 release behavior in vitro and in vivo. In vitro cytotoxicity results indicated that the redox-sensitive nanofiber had good osteoinduction. The in vivo results demonstrated that the nanofibers exhibited a capacity of prompting new bone generation in the bone defect. Therefore, the redox-responsive nanofiber in the present study may be of great potential for application in bone reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.