The topographic features of an implant, which mechanically regulate cell behaviors and functions, are critical for the clinical success in tissue regeneration. How cells sense and respond to the topographical cues, e.g., interfacial roughness, is yet to be fully understood and even debatable. Here, the mechanotransduction and fate determination of human mesenchymal stem cells (MSCs) on surface roughness gradients are systematically studied. The broad range of topographical scales and high‐throughput imaging is achieved based on a catecholic polyglycerol coating fabricated by a one‐step‐tilted dip‐coating approach. It is revealed that the adhesion of MSCs is biphasically regulated by interfacial roughness. The cell mechanotransduction is investigated from focal adhesion to transcriptional activity, which explains that cellular response to interfacial roughness undergoes a direct force‐dependent mechanism. Moreover, the optimized roughness for promoting cell fate specification is explored.
The recently emerging metal-air batteries equipped with advanced oxygen electrodes have provided enormous opportunities to develop the next generation of wearable and bio-adaptable power sources. Theoretically, neutral electrolyte-based Mg-air batteries possess potential advantages in electronics and biomedical applications over the other metal-air counterparts, especially the alkaline-based Zn-air batteries. However, the rational design of advanced oxygen electrode for Mg-air batteries with high discharge voltage and capacity under neutral conditions still remains a major challenge. Inspired by fibrous string structures of bufo-spawn, it is reported here that the scalable synthesis of atomic Fe-N coupled open-mesoporous N-doped-carbon nanofibers (OM-NCNF-FeN ) as advanced oxygen electrode for Mg-air batteries. The fabricated OM-NCNF-FeN electrodes present manifold advantages, including open-mesoporous and interconnected structures, 3D hierarchically porous networks, good bio-adaptability, homogeneously coupled atomic Fe-N sites, and high oxygen electrocatalytic performances. Most importantly, the assembled Mg-air batteries with neutral electrolytes reveal high open-circuit voltage, stable discharge voltage plateaus, high capacity, long operating life, and good flexibility. Overall, the discovery on fabricating atomic OM-NCNF-FeN electrode will not only create new pathways for achieving flexible, wearable, and bio-adaptable power sources, but also take a step towards the scale-up production of advanced nanofibrous carbon electrodes for a broad range of applications.
Recent emerged antibacterial agents provide enormous new possibilities to replace antibiotics in fighting bacterial infectious diseases. Although abundant types of nanoagents are developed for preventing pathogen colonization, however, rationally design of nonchemotherapic, robust, and clinical‐adaptable nanoagents with tunable bacterial trap and killing activities remains a major challenge. Here, a demonstration of controlling the trap, ablation, and release activities of pathogenic bacteria via stimulus‐responsive regulatory mechanism is reported. First, temperature‐sensitive polymer brush is chemically grown onto carbon nanotube–Fe3O4, whereby the synthesized nanoagents can transfer from hydrophilic dispersion to hydrophobic aggregation upon near‐infrared light irradiation, which thus controls the bacterial trap, killing, and detaching. In turn, the formed aggregations will serve as localized heating sources to enhance photothermal ablation of bacteria. Systematically antibacterial experiments and mouse wound disinfection demonstrate the ultrarobust and recyclable disinfection capability of nanoagents with nearly 100% killing ratio to Staphylococcus aureus. Overall, for the first time, we represent a pioneering study on designing nonchemotherapic and robust dual‐responsive nanoagents that can sensitively and reversibly trap, inactivate, and detach bacteria. We envision that such nanoagents will not only have potential applications in pathogenic bacteria prevention but also provide a new pathway for wound disinfection, implant sterilization, and also live bacteria transportation.
Recently emerging graphene-based 2D nanoplatforms with multiple therapeutic modalities provide enormous opportunities to combat pathogenic bacterial infections. However, because these materials suffer from complicated synthesis, massive dosage requirements, and abundant nonlocalized heat, much more simplified, tunable, and localized eradication approaches are urgently required. Herein, we report on the fabrication of the metal−organic-framework (MOF)-derived 2D carbon nanosheets (2D-CNs) with phase-to-size transformation and localized bacterial eradication capabilities for augmented anti-infective therapy. The MOFderived, ZnO-doped carbon on graphene (ZnO@G) is first synthesized and then anchored with phase transformable thermally responsive brushes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.