The rapid, recent development of image recognition technologies has led to the widespread use of convolutional neural networks (CNNs) in automated image classification and in the recognition of plant diseases. Aims: The aim of the present study was to develop a deep CNNs to identify tea plant disease types from leaf images. Materials: A CNNs model named LeafNet was developed with different sized feature extractor filters that automatically extract the features of tea plant diseases from images. DSIFT (dense scale-invariant feature transform) features are also extracted and used to construct a bag of visual words (BOVW) model that is then used to classify diseases via support vector machine(SVM) and multi-layer perceptron(MLP) classifiers. The performance of the three classifiers in disease recognition were then individually evaluated. Results: The LeafNet algorithm identified tea leaf diseases most accurately, with an average classification accuracy of 90.16%, while that of the SVM algorithm was 60.62% and that of the MLP algorithm was 70.77%. Conclusions: The LeafNet was clearly superior in the recognition of tea leaf diseases compared to the MLP and SVM algorithms. Consequently, the LeafNet can be used in future applications to improve the efficiency and accuracy of disease diagnoses in tea plants.
This paper presents a method of insect recognition using computer vision technology. First, we extracted fourteen features from images of some species of insects. These features are rectangularity, elongation, roundness, eccentricity, sphericity, lobation, compactness and seven Hu moment invariants. Second, a machine learning algorithm named Random Trees was employed, to play a role of a classifier in pattern recognition. The classifier was trained with the extracted features and the trained result was saved in a database. Then, the data can be loaded from the database into the algorithm, and then the algorithm can be used to recognize the species of insects which have been trained. In order to implement these algorithms, a series of software modules were developed to extract features, train algorithm, and do recognitions, based on an open source computer vision library named OpenCV, which is portable on Windows and Unix platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.