Quercetin, one of the most common natural flavonoids, has been reported to possess significant anti-tumor activities both in vitro and in vivo. The present study was to investigate the effects of quercetin on growth and apoptosis in human salivary adenoid cystic carcinoma (ACC). The result from MTT assay showed that quercetin decreased cell viability of both low metastatic cell line ACC-2 and high metastatic cell line ACC-M in a concentration- and time-dependent manner. Moreover, treatment with quercetin resulted in significantly increased apoptosis in ACC cells. Our data also revealed that the apoptosis induced by quercetin treatment was through a mitochondria-dependent pathway which showed close correlation with the down-regulation of the PI3K/Akt/IKK-alpha/NF-kappaB pathway. Most importantly, quercetin significantly prevented in vivo growth of ACC xenografts in nude mice, accompanied by induction of tumor cell apoptosis, suppression of NF-kappaB nuclear translocation, as well as down-regulation of Akt and IKK-alpha activation. In addition, we explored the clinical significance of the PI3K/Akt/IKK-alpha/NF-kappaB signaling axis in ACC by immunohistochemical analysis of tissue specimens followed by the clustering analyses. We determined that the PI3K/Akt/IKK-alpha/NF-kappaB pathway is ubiquitously activated in ACC and plays an essential role in the evasion of apoptosis. Taken together, the results from our study implicated that quercetin would be a promising chemotherapeutic agent against ACC through its function of down-regulating the PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway.
Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K–null mice, as well as cathepsin K–mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K–independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone– or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.