Cervical cancer is one of the malignant tumors that seriously threaten women’s health. The mechanism of development needs to be deeply studied. In recent years, lncRNA has been identified as one of the important factors affecting the malignant progression of tumors. In this study, we illustrated the important mechanism of lncRNA CAR10 in the development of cervical cancer. We found that CAR10 is significantly increased in4 cervical cancer tissues and cells, which can promote the proliferation of cervical cancer cells in vitro and in vivo, indicating that CAR10 is involved in the progression of cervical cancer as an oncogene. Further studies showed that CAR10 is a target gene of miR-125b-5p, and miR-125b-5p can inhibit the effect of CAR10 on the proliferation of cervical cancer cells. In addition, we also found that 3-phosphoinositide-dependent protein kinase 1 (PDPK1) is also a target gene of miR-125b-5p, and CAR10 can upregulate the expression level of PDPK1. The results showed that CAR10 acts as a ceRNA to upregulate the expression of PDPK1 by sponging miR-125b-5p. Knockdown of PDPK1 can inhibit the effect of CAR10 on cervical cancer cells. Our study demonstrates that, based on ceRNA mechanism, CAR10/miR-125b-5p/PDPK1 network can regulate the proliferation of cervical cancer cells and play an important role in the development of cervical cancer. In addition, our study also suggests that intervention of CAR10/miR-125b-5p/PDPK1 network may be a new strategy for targeted therapy of cervical cancer.
This study aimed to investigate the effects of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapy drug carmustine on cervical cancer cells under a certain intensity of alternating magnetic field. And the role of Mir-590-3P in the development and progression of cervical cancer. The optimal thermotherapy concentration of γ-Fe2O3 nanomaterials on cervical cancer cells was determined by in vitro heating. In addition, the MTT colorimetric method was used to evaluate the toxic effect of γ-Fe2O3 magnetic nanoparticles on cervical cancer cells, and the optimal therapeutic concentration of carbachol on cervical cancer cells was optimized (0.015 g · L−1). The cervical cancer cells were divided into control, γ-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups. After 2 h exposure to hypothermic conditions, flow cytometry was used to assess cell apoptosis for each group. The heating effect of the γ-Fe2O3 magnetic nanomaterials was apparent. When the concentration of γ-Fe2O3 was ≥6 g· L−1, the temperature rise above 41 °C. γ-Fe2O3 is non-toxic to cervical cancer cells and has good biocompatibility. Taking the drug concentration of IC25 as the working concentration of this study, the working concentration of carmustine was 0.015 g · L−1. Both the 41 °C heat treatment and chemotherapy alone had a killing effect on glioma and cervical cancer cells (P < 0.05). Additionally, the combined inhibitory effect of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy and drugs at this temperature was significantly stronger than that of thermotherapy and chemotherapy alone (P < 0.05). For the control, gamma-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups, the apoptosis rates of the cervical cancer cells were 1.4%, 18.6%, 24.12%, and 38.97%, respectively. DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapeutic drug carmustine exerted a noticeable toxic effect on the cervical cancer cells, and DMSO@γ-Fe2O3 significantly enhanced the killing effect of carmustine on cervical cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.