This study aimed to investigate the effects of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapy drug carmustine on cervical cancer cells under a certain intensity of alternating magnetic field. And the role of Mir-590-3P in the development and progression of cervical cancer. The optimal thermotherapy concentration of γ-Fe2O3 nanomaterials on cervical cancer cells was determined by in vitro heating. In addition, the MTT colorimetric method was used to evaluate the toxic effect of γ-Fe2O3 magnetic nanoparticles on cervical cancer cells, and the optimal therapeutic concentration of carbachol on cervical cancer cells was optimized (0.015 g · L−1). The cervical cancer cells were divided into control, γ-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups. After 2 h exposure to hypothermic conditions, flow cytometry was used to assess cell apoptosis for each group. The heating effect of the γ-Fe2O3 magnetic nanomaterials was apparent. When the concentration of γ-Fe2O3 was ≥6 g· L−1, the temperature rise above 41 °C. γ-Fe2O3 is non-toxic to cervical cancer cells and has good biocompatibility. Taking the drug concentration of IC25 as the working concentration of this study, the working concentration of carmustine was 0.015 g · L−1. Both the 41 °C heat treatment and chemotherapy alone had a killing effect on glioma and cervical cancer cells (P < 0.05). Additionally, the combined inhibitory effect of DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy and drugs at this temperature was significantly stronger than that of thermotherapy and chemotherapy alone (P < 0.05). For the control, gamma-Fe2O3 hyperthermia, chemotherapy, and DMSO@γ-Fe2O3 combined chemotherapy groups, the apoptosis rates of the cervical cancer cells were 1.4%, 18.6%, 24.12%, and 38.97%, respectively. DMSO@γ-Fe2O3 nanomagnetic fluid thermotherapy combined with the chemotherapeutic drug carmustine exerted a noticeable toxic effect on the cervical cancer cells, and DMSO@γ-Fe2O3 significantly enhanced the killing effect of carmustine on cervical cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.