Optical spectrometry in the visible and near-infrared range has a wide range of applications in healthcare, sensing, imaging, and diagnostics. This paper presents the first fully integrated optical spectrometer in standard bulk CMOS process without custom fabrication, postprocessing, or any external optical passive structure such as lenses, gratings, collimators, or mirrors. The architecture exploits metal interconnect layers available in CMOS processes with subwavelength feature sizes to guide, manipulate, control, diffract light, integrated photodetector, and read-out circuitry to detect dispersed light, and then back-end signal processing for robust spectral estimation. The chip, realized in bulk 65-nm low power-CMOS process, measures 0.64 mm 0.56 mm in active area, and achieves 1.4 nm in peak detection accuracy for continuous wave excitations between 500 and 830 nm. This paper demonstrates the ability to use these metal-optic nanostructures to miniaturize complex optical instrumentation into a new class of optics-free CMOS-based systems-on-chip in the visible and near-IR for various sensing and imaging applications.
This paper introduces a new design methodology for incorporating process-sensitive optical nanostructures in standard CMOS processes to create robust optical physically unclonable functions (PUFs) realized through an electricalphotonic co-design approach. The passive lithographic variations of lower level metal interconnects are exploited to realize resonant photonic crystals on an array of photodetectors to include variations that are robust to noise processes. The chip is realized in a standard 65-nm CMOS process with no additional post-processing. The addition of the structures increases the coefficient of variation by a factor of 3.5× compared to only active device variations. This creates extremely robust PUF responses with a native inter-chip Hamming distance (HD) of 49.81% and intra-chip HD of 0.251% with an inter-HD/ intra-HD ratio of 198× illustrating the reliability of the design. The native intra-HD can be reduced to 0.06% with 17 mV of thresholding with only 4% of the total combinations discarded. To the best our knowledge, this is also the first demonstration of photonic crystals and an optical PUF in CMOS.
In this work, we demonstrate for the first time massively parallelizable nanoplasmonic structures and integration of electronics in the same substrate in CMOS. We adopt the same "fabless" approach in today's semiconductor industry with absolutely "no change" of either fabrication or processing and show that copper interconnects in an industry standard digital CMOS process (65 nm node) can be exploited to allow subwavelength optical field processing in a massively scalable fashion. We demonstrate this in the context of eliminating all external optics and enabling the first optics-free fully integrated CMOS fluorescence-based biosensor array. The system has massively multiplexed biomolecular sensing capability for DNAs with surface sensitivity comparable to commercial fluorescence readers. The angle and scattering insensitive nature of the filter, relying on coupled surface-plasmon polariton modes, allows us to eliminate all external optics and miniaturize the entire 96-sensor array system (including a LED source) within 0.1 cc of volume. The system demonstrates detection sensitivity of less than 1 molecule/μm 2 or zepto moles of quantum dot based fluorophores on the chip surface. The electronic−nanophotonic codesign approach allows us to optimally partition optical and electronic filtering, enabling us to detect fluorescence signal 77 dB lower than the excitation. Such CMOS-based nano-optical systems can lead to novel chip-scale optical sensors for in vitro and in vivo applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.