Ketone compounds are oxidation products of crude oil in the in-situ combustion (ISC) process. Revealing the molecular composition of ketones can provide theoretical guidance for understanding the oxidation process of crude oil and valuable clues for studying the combustion state of crude oil in the reservoir. In this study, low-temperature oxidation (LTO) processes were simulated in thermal oxidation experiments to obtain thermally oxidized oil at different temperatures (170 °C, 220 °C, 270 °C, and 320 °C). A combination of chemical derivatization and positive-ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze the molecular composition of different kinds of ketones (fatty ketones, naphthenic ketones, and aromatic ketones) in the oxidized oils at different temperatures. The results showed that the concentration of aliphatic ketones and aliphatic cyclic ketones in the product oils decreased with the increase in temperature, while aromatic ketones increased with the increase in temperature. At the same oxidation temperature, the content of ketones follows this order: fatty ketones < cycloalkanes < aromatic ketones. The concentrations of ketones reached their maximum value at 170 °C and decreased at high temperatures due to over-oxidation. It was also found that nitrogen-containing compounds are more easily oxidized to ketone compounds than their hydrocarbon counterparts in the LTO process.
In this study, a total of 25 main compounds of three sauce-aroma Chinese liquors were identified by GC-MS and high-resolution mass spectrometry, and 6 of them (methyl palmitate, ethyl palmitate, methyl linoleate, ethyl linoleate, methyl oleate, and ethyl oleate) were speculated to be characteristic substances of the Maotai series with sauce-aroma type. This study aims to find out the characteristic fingerprint of Chinese liquor and provide a new way for the rapid identification of liquor type and quality. Further experiments are needed to verify the suppose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.