Objective:To characterize the magnitude of virus contamination on personal protective equipment (PPE), skin, and clothing of healthcare workers (HCWs) who cared for patients having acute viral infections.Design:Prospective observational study.Setting:Acute-care academic hospital.Participants:A total of 59 HCWs agreed to have their PPE, clothing, and/or skin swabbed for virus measurement.Methods:The PPE worn by HCW participants, including glove, face mask, gown, and personal stethoscope, were swabbed with Copan swabs. After PPE doffing, bodies and clothing of HCWs were sampled with Copan swabs: hand, face, and scrubs. Preamplification and quantitative polymerase chain reaction (qPCR) methods were used to quantify viral RNA copies in the swab samples.Results:Overall, 31% of glove samples, 21% of gown samples, and 12% of face mask samples were positive for virus. Among the body and clothing sites, 21% of bare hand samples, 11% of scrub samples, and 7% of face samples were positive for virus. Virus concentrations on PPE were not statistically significantly different than concentrations on skin and clothing under PPE. Virus concentrations on the personal stethoscopes and on the gowns were positively correlated with the number of torso contacts (P < .05). Virus concentrations on face masks were positively correlated with the number of face mask contacts and patient contacts (P < .05).Conclusions:Healthcare workers are routinely contaminated with respiratory viruses after patient care, indicating the need to ensure that HCWs complete hand hygiene and use other PPE to prevent dissemination of virus to other areas of the hospital. Modifying self-contact behaviors may decrease the presence of virus on HCWs.
Background Respiratory viruses on fomites can be transferred to sites susceptible to infection via contact by hands or other fomites. Methods Care for hospitalized patients with viral respiratory infections was observed in the patient room for 3-hour periods at an acute care academic medical center for over a 2 year period. One trained observer recorded the healthcare activities performed, contacts with fomites, and self-contacts made by healthcare workers (HCWs), while another observer recorded fomite contacts of patients during the encounter using predefined checklists. Results The surface contacted by HCWs during the majority of visits was the patient (90%). Environmental surfaces contacted by HCWs frequently during healthcare activities included the tray table (48%), bed surface (41%), bed rail (41%), computer station (37%), and intravenous pole (32%). HCWs touched their own torso and mask in 32% and 29% of the visits, respectively. HCWs’ self-contacts differed significantly among HCW job roles, with providers and respiratory therapists contacting themselves significantly more times than nurses and nurse technicians (P < .05). When HCWs performed only 1 care activity, there were significant differences in the number of patient contacts and self-contacts that HCWs made during performance of multiple care activities (P < .05). Conclusions HCWs regularly contact environmental surfaces, patients, and themselves while providing care to patients with infectious diseases, varying among care activities and HCW job roles. These contacts may facilitate the transmission of infection to HCWs and susceptible patients.
Bronchoscopy is classified as an aerosol-generating procedure, but it is unclear what drives the elevated infection risk observed among healthcare personnel performing the procedure. The objective of this study was to characterize pathways through which bronchoscopists may be exposed to infectious agents during bronchoscopy procedures. Aerosol number concentrations (0.2-1 mm aerodynamic diameter) were measured using a P-Trak Ultrafine Particle Counter 8525 and mass concentrations (<10 mm) were measured using a SidePak Personal Aerosol Monitor AM510 near the head of patients during bronchoscopy procedures. Procedure pathway, number of patient coughs, number of suctioning events, number of contacts with different surfaces by the pulmonologist, and the use and doffing of personal protective equipment were recorded by the investigator on a specially designed form. Any pulmonologist performing a bronchoscopy procedure was eligible to participate. A total of 18 procedures were observed. Mean particle number and mass concentrations were not elevated during procedures relative to those measured before or after the procedure, on average, but the concentrations were highly variable, exhibiting high levels periodically. Patients frequently coughed during procedures (median 65 coughs, range: 0-565 coughs), and suctioning was commonly performed (median 6.5 suctioning events, range: 0-42). In all procedures, pulmonologists contacted the patient (mean 22.3 contacts, range: 1-48), bronchoscope (mean 19.4 contacts, range: 1-46), and at least one environmental surface (mean 31.2 contacts, range: 3-62). In the majority of procedures, the participant contacted his or her body or personal protective equipment (PPE), with a mean of 17.3 contacts (range: 4-48). More often than not, the observed PPE doffing practices differed from those recommended. Bronchoscopy procedures were associated with short-term increased ultrafine or respirable aerosol concentrations, and there were opportunities for contact transmission.
Objective:To characterize the presence and magnitude of viruses in the air and on surfaces in the rooms of hospitalized patients with respiratory viral infections, and to explore the association between care activities and viral contamination.Design:Prospective observational study.Setting:Acute-care academic hospital.Participants:In total, 52 adult patients with a positive respiratory viral infection test within 3 days of observation participated. Healthcare workers (HCWs) were recruited in staff meetings and at the time of patient care, and 23 wore personal air-sampling devices.Methods:Viruses were measured in the air at a fixed location and in the personal breathing zone of HCWs. Predetermined environmental surfaces were sampled using premoistened Copan swabs at the beginning and at the end of the 3-hour observation period. Preamplification and quantitative real-time PCR methods were used to quantify viral pathogens.Results:Overall, 43% of stationary and 22% of personal air samples were positive for virus. Positive stationary air samples were associated with ≥5 HCW encounters during the observation period (odds ratio [OR], 5.3; 95% confidence interval [CI], 1.2–37.8). Viruses were frequently detected on all of the surfaces sampled. Virus concentrations on the IV pole hanger and telephone were positively correlated with the number of contacts made by HCWs on those surfaces. The distributions of influenza, rhinoviruses, and other viruses in the environment were similar.Conclusions:Healthcare workers are at risk of contracting respiratory virus infections when delivering routine care for patients infected with the viruses, and they are at risk of disseminating virus because they touch virus-contaminated fomites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.