To date, the monsoon-research community has not yet reached a consensus on a unified definition of monsoon rainy season or on the linkage between the onsets over the Asian continent and the adjacent oceans. A single rainfall parameter is proposed, and a suite of universal criteria for defining the domain, onset, peak, and withdrawal of the rainy season are developed. These results reveal a cohesive spatial-temporal structure of the Asian-Pacific monsoon rainy season characteristics, which will facilitate validation of monsoon hydrological cycles simulated by climate system models and improve our understanding of monsoon dynamics. The large-scale onset of the Asian monsoon rainy season consists of two phases. The first phase begins with the rainfall surges over the South China Sea (SCS) in mid-May, which establishes a planetary-scale monsoon rainband extending from the south Asian marginal seas (the Arabian Sea, the Bay of Bengal, and the SCS) to the subtropical western North Pacific (WNP). The rainband then advances northwestward, initiating the continental Indian rainy season, the Chinese mei-yu, and the Japanese baiu in early to mid-June (the second phase). The heights of the rainy seasons occur primarily in three stepwise phases: in late June over the mei-yu/baiu regions, the northern Bay of Bengal, and the vicinity of the Philippines, in late July over India and northern China; and in mid-August over the tropical WNP. The rainy season retreats northward over east Asia, yet it moves southward over India and the WNP. Clear distinctions in the characteristics of the rainy season exist among the Indian, east Asian, and WNP summer monsoon regions. Nevertheless, the rainy seasons of the three subsystems also show close linkage. The causes of the regional distinctions and linkages are discussed. Also discussed are the atypical monsoon rainy seasons, such as the skewed and bimodal seasonal distributions found in various places of Asian monsoon domain.
The climatological mean summer monsoon onset in the South China Sea (SCS) is a remarkably abrupt event. However, defining onset dates for individual years is noticeably controversial. The controversies and complications arise primarily from a number of factors: the intermittent southward intrusion of cold fronts into the northern SCS, the bogus onset in late April before the establishment of tropical monsoons over Indochina, and active intraseasonal oscillation. In this paper, a simple yet effective index, U SCS , the 850-hPa zonal winds averaged over the central SCS (5Њ-15ЊN and 110Њ-120ЊE), is proposed for objectively defining the SCS monsoon onset. This onset index depicts not only the sudden establishment of the tropical southwesterly monsoon over the SCS but also the outbreak of the rainy season in the central-northern SCS.In this paper the East Asian summer monsoon (EASM) is defined as the broadscale summer monsoon over East Asia and the western North Pacific region (0Њ-40ЊN, 100Њ-140ЊE). It is shown that the seasonal transition of EASM can be objectively determined by the principal component of the dominant empirical orthogonal mode of the 850-hPa zonal winds, U EOF1 . It is found that the local index U SCS represents U EOF1 extremely well; thus, it can be used to determine both the SCS onset and the commencement of the broadscale EASM. The result suggests that the SCS summer monsoon onset indeed signifies the beginning of the summer monsoon over East Asia and the adjacent western Pacific Ocean. Evidence is also provided to show the linkage between the two salient phases of EASM: the local onset of the SCS monsoon and the local onset of the mei-yu (the rainy season in the Yangtze River and Huai River basin and southern Japan).
[1] Summer thermal structure and winds over Asia show a larger land-ocean thermal gradient in the upper than in the lower troposphere, implying a bigger role of the upper troposphere in driving the Asian summer monsoon circulation. Using data from atmospheric re-analyses and model simulations, we show that the land-ocean thermal contrast in the mid-upper (200-500 hPa) troposphere (TCupper) contributes about three times as much as the thermal contrast in the mid-lower (500-850 hPa) troposphere (TClower) in determining both the strength and variations of Asian summer monsoon circulations. Tropical sea surface temperature anomalies associated with the annual cycle, El Niño-Southern Oscillation, decadal changes, and global warming all are accompanied with much larger variations and changes in TCupper than in TClower, partly due to enhanced latent heating aloft from convection. The variations and changes in TCupper and TClower are highly correlated with the strength of the South Asian Summer Monsoon (SASM) and the East Asian Summer Monsoon (EASM) in their respective sectors during the past 50-60 years. In particular, the weakening of the EASM since the 1950s is caused by the weakening mainly in TCupper and secondarily in TClower induced mainly by recent tropical surface warming, although spurious cooling over East Asia seen in reanalysis data may have enhanced this weakening. However, the strength of the SASM and EASM monsoons follows TCupper but decouples with TClower in the global warming case in the 21 st century. The results suggest that the TCupper plays a dominant role and provides an efficient mechanism through which tropical oceans can influence extratropical monsoons.
The physical mechanism for the amplitude asymmetry of SST anomalies (SSTA) between the positive and negative phases of the Indian Ocean dipole (IOD) is investigated, using Simple Ocean Data Assimilation (SODA) and NCAR-NCEP data. It is found that a strong negative skewness appears in the IOD east pole (IODE) in the mature phase [September-November (SON)], while the skewness in the IOD west pole is insignificant. Thus, the IOD asymmetry is primarily caused by the negative skewness in IODE.A mixed-layer heat budget analysis indicates that the following two air-sea feedback processes are responsible for the negative skewness. The first is attributed to the asymmetry of the wind stress-ocean advection-SST feedback. During the IOD developing stage [June-September (JJAS)], the ocean linear advection tends to enhance the mixed-layer temperature tendency, while nonlinear advection tends to cool the ocean in both the positive and negative events, thus contributing to the negative skewness in IODE. The second process is attributed to the asymmetry of the SST-cloud-radiation (SCR) feedback. For a positive IODE, the negative SCR feedback continues with the increase of warm SSTA. For a negative IODE, the same negative SCR feedback works when the amplitude of SSTA is small. After reaching a critical value, the cold SSTA may completely suppress the mean convection and lead to cloud free conditions; a further drop of the cold SSTA does not lead to additional thermal damping so that the cold SSTA may grow faster. A wind-evaporation-SST feedback may further amplify the asymmetry induced by the aforementioned nonlinear advection and SCR feedback processes.
Despite the seemingly intricate and multifold time-space structure of the mean Asian-Pacific summer monsoon (APSM), its complexity can be greatly reduced once the significance of fast annual cycles has been recognized and put into perspective. The APSM climatology is characterized by a slowly evolving seasonal transition (slow annual cycle) superposed by pronounced singularities in the intraseasonal timescale, termed the ''fast annual cycle'' in this study. The fast annual cycles show nonrepetitive features from one episode to another, which are often divided by abrupt change events. The APSM fast annual cycles are composed mainly of two monsoon outbreaks, each marking a distinctive dry-wet cycle. The first cycle spans from the middle of May to early July and the second cycle from late July to early September. When the first cycle reaches its peak in mid-June, a slingshot-like convection zone, described as the grand-onset pattern, rules an area from the Arabian Sea to the Indochina Peninsula then bifurcates into a mei-yu branch and a tropical rain belt in the lower western North Pacific. After a brief recess during 20-29 July, the APSM harbors another rain surge in mid-August. This time a giant oceanic cyclone intensifies over the western North Pacific (around 20ЊN, 140ЊE); thus the rainy regime jumps 10Њ-15Њ north of the previous rain belt. This ocean monsoon gyre incubates numerous tropical cyclones. Meanwhile, the convection zone of the Indian monsoon intensifies and extends well into the subcontinent interior.From the first to second cycle the major convection center has shifted from the adjacent seas in the northern Indian Ocean to the open ocean east of the Philippine Islands. The major cloud movement also switches from a northeastward direction in the Indian Ocean to a northwestward direction over the western North Pacific.The two monsoon cycles turn out to be a global phenomenon. This can be shown by the coherent seasonal migration of upper-level subtropical ridgelines in the Northern Hemisphere. During the first cycle all the ridgelines migrate northward rapidly, a sign that the major circulation systems of boreal summer go through a developing stage. After 20-29 July, they reach a quasi steady state, a state in which all ridgelines stand still near their northern rim throughout the entire second cycle.A reconstructed fast annual cycle based on four leading empirical orthogonal function modes is capable of reproducing most fine details of the APSM climatology, suggesting that the subseasonal changes of the mean APSM possess a limited number of degrees of freedom. A monsoon calendar designed on the basis of fast annual cycles (FACs) gives a concise description of the APSM climatology and provides benchmarks for validating climate model simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.