For the first time, a composite of fluorine-doped SnO 2 and reduced graphene oxide (F-SnO 2 @RGO) was synthesized using a cheap F-containing Sn source, Sn(BF 4 ) 2 , through a hydrothermal process. X-ray photoelectron spectroscopy and X-ray diffraction results identified that F was doped in the unit cells of the SnO 2 nanocrystals, instead of only on the surfaces of the nanoparticles. F doping of SnO 2 led to more uniform and higher loading of the F-SnO 2 nanoparticles on the surfaces of RGO sheets, as well as enhanced electron transportation and Li ion diffusion in the composite. As a result, the F-SnO 2 @RGO composite exhibited a remarkably high specific capacity (1277 mA h g -1 after 100 cycles), a long-term cycling stability, and excellent high-rate capacity at large charge/discharge current densities as anode material for lithium ion batteries. The outstanding performance of the F-SnO 2 @RGO composite electrode could be ascribed to the combined features of the composite electrode that dealt with both the electrode dynamics (enhanced electron transportation and Li ion diffusion due to F doping) and the electrode structure (uniform decoration of the F-SnO 2 nanoparticles on the surfaces of RGO sheets and the three-dimensional porous structures of the F-SnO 2 @RGO composite).
Available observations below 5000 m altitude suggest that some mountain regions are undergoing accelerated elevationdependent warming (EDW) in response to global or regional climate change. We address the question of whether EDW exists above 5000 m altitude, which is the elevation of much of the mountainous portion of the Tibetan Plateau, and headwaters to most of Asia's major rivers. We analyzed four data sources: in situ observations, gridded observations, ERA-Interim reanalysis, and Weather Research and Forecasting (WRF) regional climate model output over the portion of the Tibetan Plateau above 5000 m elevation. We also analyzed the relative contributions of changes in water vapor, diabatic heating, snow, and surface energy changes to EDW in WRF simulations and ERA-Interim. Gridded observations over the Tibetan Plateau show EDW below 5000 m, in apparent consistency with studies elsewhere. However, the gridded observations above 5000 m are essentially entirely extrapolated from lower elevations. Despite differences in details, neither ERA-Interim nor WRF indicate EDW above 5000 m. The WRF simulation produces more realistic temperature profiles at elevations where observations exist, which are also consistent with the simulated profiles of factors contributing to vertical heating. Furthermore, WRF projects no EDW above 5000 m in future climate projections (with CCSM4 boundary conditions) for RCP 4.5 and 8.5 global emission scenarios. Therefore, we conclude that EDW above 5000 m over the Tibetan Plateau is not occurring, nor is it likely to occur in future decades.
Surface modification of graphene is extremely important for applications. Here, we report a grafting-through method for grafting water-soluble polythiophenes onto reduced graphene oxide (RGO) sheets. As a result of tailoring of the side chains of the polythiophenes, the modified RGO sheets, that is, RGO-g-P3TOPA and RGO-g-P3TOPS, are positively and negatively charged, respectively. The grafted water-soluble polythiophenes provide the modified RGO sheets with good dispersibility in water and high photothermal conversion efficiencies (ca. 88%). Notably, the positively charged RGO-g-P3TOPA exhibits unprecedentedly excellent photothermal bactericidal activity, because the electrostatic attractions between RGO-g-P3TOPA and Escherichia coli (E. coli) bind them together, facilitating direct heat conduction through their interfaces: the minimum concentration of RGO-g-P3TOPA that kills 100% of E. coli is 2.5 μg mL, which is only 1/16th of that required for RGO-g-P3TOPS to exhibit a similar bactericidal activity. The direct heat conduction mechanism is supported by zeta-potential measurements and photothermal heating tests, in which the achieved temperature of the RGO-g-P3TOPA suspension (2.5 μg mL, 32 °C) that kills 100% of E. coli is found to be much lower than the thermoablation threshold of bacteria. Therefore, this research demonstrates a novel and superior method that combines photothermal heating effect and electrostatic attractions to efficiently kill bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.