A number of organizations ranging from terrorist groups such as ISIS to politicians and nation states reportedly conduct explicit campaigns to influence opinion on social media, posing a risk to democratic processes. There is thus a growing need to identify and eliminate "influence bots" - realistic, automated identities that illicitly shape discussion on sites like Twitter and Facebook - before they get too influential. Spurred by such events, DARPA held a 4-week competition in February/March 2015 in which multiple teams supported by the DARPA Social Media in Strategic Communications program competed to identify a set of previously identified "influence bots" serving as ground truth on a specific topic within Twitter. Past work regarding influence bots often has difficulty supporting claims about accuracy, since there is limited ground truth (though some exceptions do exist [3,7]). However, with the exception of [3], no past work has looked specifically at identifying influence bots on a specific topic. This paper describes the DARPA Challenge and describes the methods used by the three top-ranked teams.Comment: IEEE Computer Magazine, in pres
Abstract-We propose a temporal latent space model for link prediction in dynamic social networks, where the goal is to predict links over time based on a sequence of previous graph snapshots. The model assumes that each user lies in an unobserved latent space, and interactions are more likely to occur between similar users in the latent space representation. In addition, the model allows each user to gradually move its position in the latent space as the network structure evolves over time. We present a global optimization algorithm to effectively infer the temporal latent space. Two alternative optimization algorithms with local and incremental updates are also proposed, allowing the model to scale to larger networks without compromising prediction accuracy. Empirically, we demonstrate that our model, when evaluated on a number of real-world dynamic networks, significantly outperforms existing approaches for temporal link prediction in terms of both scalability and predictive power.
Real-time traffic prediction from high-fidelity spatiotemporal traffic sensor datasets is an important problem for intelligent transportation systems and sustainability. However, it is challenging due to the complex topological dependencies and high dynamism associated with changing road conditions. In this paper, we propose a Latent Space Model for Road Networks (LSM-RN) to address these challenges holistically. In particular, given a series of road network snapshots, we learn the attributes of vertices in latent spaces which capture both topological and temporal properties. As these latent attributes are time-dependent, they can estimate how traffic patterns form and evolve. In addition, we present an incremental online algorithm which sequentially and adaptively learns the latent attributes from the temporal graph changes. Our framework enables real-time traffic prediction by 1) exploiting real-time sensor readings to adjust/update the existing latent spaces, and 2) training as data arrives and making predictions on-the-fly. By conducting extensive experiments with a large volume of real-world traffic sensor data, we demonstrate the superiority of our framework for real-time traffic prediction on large road networks over competitors as well as baseline graph-based LSM's.
Maximal clique enumeration (MCE) is a long-standing problem in graph theory and has numerous important applications. Though extensively studied, most existing algorithms become impractical when the input graph is too large and is disk-resident. We first propose an efficient partition-based algorithm for MCE that addresses the problem of processing large graphs with limited memory. We then further reduce the high cost of CPU computation of MCE by a careful nested partition based on a cost model. Finally, we parallelize our algorithm to further reduce the overall running time. We verified the efficiency of our algorithms by experiments in large real-world graphs.
Maximal clique enumeration is a fundamental problem in graph theory and has important applications in many areas such as social network analysis and bioinformatics. The problem is extensively studied; however, the best existing algorithms require memory space linear in the size of the input graph. This has become a serious concern in view of the massive volume of today's fast-growing networks. We propose a general framework for designing external-memory algorithms for maximal clique enumeration in large graphs. The general framework enables maximal clique enumeration to be processed recursively in small subgraphs of the input graph, thus allowing in-memory computation of maximal cliques without the costly random disk access. We prove that the set of cliques obtained by the recursive local computation is both correct (i.e., globally maximal) and complete. The subgraph to be processed each time is defined based on a set of base vertices that can be flexibly chosen to achieve different purposes. We discuss the selection of the base vertices to fully utilize the available memory in order to minimize I/O cost in static graphs, and for update maintenance in dynamic graphs. We also apply our framework to design an external-memory algorithm for maximum clique computation in a large graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.