Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E’) of various MPU/EUG composites increased in a temperature range of −50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz–8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.
Almost all of the research on cracks in laser cladding is based, at present, on a horizontal substrate, which cannot be directly applied to prepare high performance coatings, especially high hardness coatings, on tilted substrate. In this work, the influence of the substrate’s tilt angle on the crack behavior of high hardness Ni60A coating is studied, based on the laser intensity distribution and energy attenuation models on the tilted substrate. Results show that the cracking rate (the crack number in the unit’s cladding length) of the coating increases with the increasing substrate tilt angle, but the tilt angle has no significant influence on the crack mechanism. The different lap direction has a certain influence on the crack, and the coating prepared by downward lap cladding has a larger cracking rate due to the greater laser energy loss. Furthermore, with the increasing substrate tilt angle, the residual stress increases due to the decreased plastic flow, and the fracture strength decreases due to the decreased dilution rate, which results in the increase in the cracking rate of the Ni60A coating. This work will broaden the application of laser cladding technology on repairing complex parts such as gear and blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.