The rapid and accurate detection of urban water is critical for urban management, river detection, and flood disaster assessment. This study is devoted to detecting water by GaoFen-3 (GF-3) Synthetic Aperture Radar (SAR) images with high spatial resolution. There have been no effective solutions that discriminate water and building shadows using a single SAR image in previous research. Inspired by the principle that every shadow has a corresponding building nearby, a new method is proposed in this study, whereby building shadows are removed depending on the correspondence of buildings and their shadows. The proposed method is demonstrated effective and efficient by experimental results on six GF-3 SAR images. The Receiver Operating Characteristic (ROC) curves of the water detection results indicate that the proposed method increases the Probability of Detection (PD) to 98.36% and decreases the Probability of False Alarm (PFA) to 1.91% compared with the thresholding method, where, at the same PFA level, the maximum PD of the thresholding method is 72.62% in all testing samples. The proposed method is capable of removing building shadows and detecting water with high precision in urban areas, which presents the great potential of high-spatial-resolution GF-3 images in terms of water resource management.
Due to the widespread presence of noise, such as clouds and cloud shadows, continuous, high spatiotemporal-resolution dynamic monitoring of lake water extents is still limited using remote sensing data. This study aims to take an approach to mapping continuous time series of highly-accurate lake water extents. Four lakes from diverse regions of China were selected as cases. In order to reduce the impact of noise and ensure high spatial and temporal resolution of the final results, two sets of MODIS products (including MOD09A1 and MOD13Q1) are used to extract water bodies. This approach mainly comprises preliminary classification, post processing and data fusion. The preliminary classification used the Random Forest (RF) classifier to efficiently and automatically obtain the initial classification results. Post-processing is implemented to repair the classification results affected by noise as much as possible. The processed results of the two sets of products are fused by using the Homologous Data-Based Spatial and Temporal Adaptive Fusion Method (HDSTAFM), which reduces the effect of noise and also improve the temporal and spatial resolution for the final water results. We determined the accuracy using Landsat-based water results, and the values of overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficients (KC) are mostly greater than 0.9. Good correlation was achieved for a time series of water area and altimetry data, obtained by multiple satellites, and also for water-level data selected from hydrological stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.