We demonstrate a photonic microwave generator on the heterogeneous silicon-InP platform. Waveguide photodiodes with a 3 dB bandwidth of 65 GHz and 0.4 A/W responsivity are integrated with lasers that tune over 42 nm with less than 150 kHz linewidth. Microwave signal generation from 1 to 112 GHz is achieved.
Chip-scale widely-tunable lasers are important for both communication and sensing applications. They have a number of advantages, such as size, weight, and cost compared to mechanically tuned counterparts. Furthermore, they allow for integration in more complex integrated photonic chips to realize added functionality. Here we give an extensive overview of such lasers realized by utilizing ring resonators inside the laser cavity. Use of ring resonators for tuning allows for wide-tunability by exploiting the Vernier effect, and at the same time improves the laser linewidth, as effective cavity length is increased at ring resonance. In this review, we briefly introduce basic concepts of laser tuning using ring resonators. Then, we study a number of laser cavity configurations that utilize two ring resonators, and compare their tuning performance. We introduce a third ring resonator to the laser cavity, study three different cavity configurations utilizing three ring resonators, and select the optimal one, for which we show that laser tuning is straightforward, provided there are monitor photodetectors on-chip. Finally, we give a literature overview showing superior linewidth performance of ring-based widely-tunable lasers.
Background:
Illustrating the pathogenesis of hepatocellular carcinoma (HCC) pathogenesis as well as identifying specific biomarkers are of great significance.
Methods:
The original CEL files were obtain from Gene Expression Omnibus, then affymetrix package was used to preprocess the CEL files, the function of DEGs were investigated by multiple bioinformatics approach. Finally, typical HCC cell lines and tissue samples were using to validate the role of CDC6 in vitro. Bioinformatics software was used to predict potential microRNA of CDC6. Luciferase assay was used to verify the interactions between CDC6 and microRNA.
Results:
A total of 445 DEGs were identified in HCC tissues based on two GEO datasets. GSEA results showed that the significant enriched gene sets were only associated with cell cycle signaling pathway. In the co-expression analysis, there were 370 hub genes from the blue modules were screened. We integrated DEGs, hub genes, TCGA cohort and GSEA analyses to further obtain 10 upregulated genes for validation. These genes were overexpressed in HCC tissues and negatively associated with overall and disease-free survival in HCC patients and related to immune cell infiltration in HCC microenvironments. Finally, Cell Division Cycle 6 (CDC6) was highlighted as one of the most probable genes among the 10 candidates participating in cancer process. The expression of CDC6 either in public datasets and HCC tissues sample were commonly high than the non-cancerous counterpart. Furthermore, we recognized that miR-215-5p, could directly bind to the 3'UTR of CDC6. In addition, CDC6 promoted proliferation via regulation of G1 phase checkpoint and was negative regulated by miR-215-5p to involve in the proliferation of HCC.
Conclusion:
Our study suggested that CDC6 served as a potential therapeutic target for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.