Allostery is the most direct and efficient way for regulation of biological macromolecule function and is induced by the binding of a ligand at an allosteric site topographically distinct from the orthosteric site. AlloSteric Database (ASD, http://mdl.shsmu.edu.cn/ASD) has been developed to provide comprehensive information on allostery. Owing to the inherent high receptor selectivity and lower target-based toxicity, allosteric regulation is expected to assume a more prominent role in drug discovery and bioengineering, leading to the rapid growth of allosteric findings. In this updated version, ASD v2.0 has expanded to 1286 allosteric proteins, 565 allosteric diseases and 22 008 allosteric modulators. A total of 907 allosteric site-modulator structural complexes and >200 structural pairs of orthosteric/allosteric sites in the allosteric proteins were constructed for researchers to develop allosteric site and pathway tools in response to community demands. Up-to-date allosteric pathways were manually curated in the updated version. In addition, both the front-end and the back-end of ASD have been redesigned and enhanced to allow more efficient access. Taken together, these updates are useful for facilitating the investigation of allosteric mechanisms, allosteric target identification and allosteric drug discovery.
Anaplastic lymphoma kinase (ALK) is validated as a therapeutic molecular target in multiple malignancies, such as non-small cell lung cancer (NSCLC). However, the feasibility of targeted therapies exerted by ALK inhibitors is inevitably hindered owing to drug resistance. The emergence of clinically acquired drug mutations has become a major challenge to targeted therapies and personalized medicines. Thus, elucidating the mechanism of resistance to ALK inhibitors is helpful for providing new therapeutic strategies for the design of next-generation drug. Here, we used molecular docking and multiple molecular dynamics simulations combined with correlated and energetical analyses to explore the mechanism of how gilteritinib overcomes lorlatinib resistance to the double mutant ALK I1171N/F1174I. We found that the conformational dynamics of the ALK kinase domain was reduced by the double mutations I1171N/F1174I. Moreover, energetical and structural analyses implied that the double mutations largely disturbed the conserved hydrogen bonding interactions from the hinge residues Glu1197 and Met1199 in the lorlatinib-bound state, whereas they had no discernible adverse impact on the binding affinity and stability of gilteritinib-bound state. These discrepancies created the capacity of the double mutant ALK I1171N/F1174I to confer drug resistance to lorlatinib. Our result anticipates to provide a mechanistic insight into the mechanism of drug resistance induced by ALK I1171N/F1174I that are resistant to lorlatinib treatment in NSCLC.
Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.