Neuromodulation is crucial for the understanding of brain circuits and treatment of neurological diseases. This work demonstrates a new photoacoustic nanoparticlebased neural stimulation technique. Synthesized nanoparticles transduce nearinfrared light to ultrasound locally at the neuronal membrane and evoke neural activation in vitro and in vivo. Through targeting the mechanosensitive ion channel TRPV4, the modified nanotransducers achieve neural activation with enhanced specificity. Together, photoacoustic nanotransducers offer opportunities for nongenetic neuromodulation with deep tissue penetration.
Neural interfaces using biocompatible scaffolds provide crucial properties for the functional repair of nerve injuries and neurodegenerative diseases, including cell adhesion, structural support, and mass transport. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a new strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are 2 embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable non-genetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation. 94% of photoacoustic stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74fold in a dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that photoacoustic neural stimulation promoted neurite outgrowth by impacting the brain-derived neurotrophic factor (BDNF) pathway. As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated non-genetic PA neural stimulation functions and promoted neurite outgrowth, providing a new method for non-pharmacological neural regeneration.
Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultrasound field with a high spatial precision of 39.6 µm, enabling optoacoustic activation of single neurons or subcellular structures, such as axons and dendrites. Temporally, a single acoustic pulse of sub-microsecond converted by the TFOE from a single laser pulse of 3 ns is shown as the shortest acoustic stimuli so far for successful neuron activation. The precise ultrasound generated by the TFOE enabled the integration of the optoacoustic stimulation with highly stable patch-clamp recording on single neurons. Direct measurements of the electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific responses of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of ultrasound neurostimulation.
Graphical abstract A fiber-based optoacoustic emitter is developed, serving as the most miniaturized ultrasound point source so far, with sub-millimeter confinement. Controllable frequencies are achieved and further induce cell membrane sonoporation with frequency dependent efficiency. By solving the problem of compromise between sub-MHz frequency and sub-millimeter precision via breaking the diffraction limit, the FOE shows a great potential in region-specific cell modulation.
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.